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A neuroethological approach to human and nonhuman primate
behavior and cognition predicts biological specializations for social
life. Evidence reviewed here indicates that ancestral mechanisms are
often duplicated, repurposed, and differentially regulated to sup-
port social behavior. Focusing on recent research from nonhuman
primates, we describe how the primate brainmight implement social
functions by coopting and extending preexisting mechanisms that
previously supported nonsocial functions. This approach reveals that
highly specialized mechanisms have evolved to decipher the imme-
diate social context, and parallel circuits have evolved to translate
social perceptual signals and nonsocial perceptual signals into
partially integrated social and nonsocial motivational signals, which
together inform general-purpose mechanisms that command be-
havior. Differences in social behavior between species, as well as
between individuals within a species, result in part from neuro-
modulatory regulation of these neural circuits, which itself appears
to be under partial genetic control. Ultimately, intraspecific variation
in social behavior has differential fitness consequences, providing
fundamental building blocks of natural selection. Our review sug-
gests that the neuroethological approach to primate behavior may
provide unique insights into human psychopathology.
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Sensitivity and responsiveness to information about others is
critical for human health (1, 2), survival (3), and even financial

success (4). To navigate our social worlds, we track the behavior of
others and form models of their intentions and emotional states,
we actively seek out and exchange information about others, and
we flexibly alter our behavior in response to what we know about
others. These faculties are so important to human behavior that
their disruption constitutes psychopathology (5, 6). These spe-
cializations for social behavior reflect a rich evolutionary heritage
of adaptation to group life (7–9). Like humans, many nonhuman
primates also live in large groups characterized by patterns of
social behaviors like grooming, imitative and cooperative foraging,
differentiated affiliative relationships, ritualized courtship and
mating behavior, and competitive interactions structured by social
dominance (10, 11). Not surprisingly, the ability to deftly navigate the
social environment has observable consequences for reproductive
success in some nonhuman primates (12).

Evolutionary Perspective on Social Behavior
Social behavior places strong and unique demands on the nervous
system. Across primate species, group size (a potential proxy of
social complexity) is correlated with forebrain volume, after
correcting for body size (9). Additional brain tissue beyond that
required to maintain a body of a particular size is costly, in both
developmental complexity and metabolic demands (7, 13–15).
Indeed, social complexity and the elaboration of neural mecha-
nisms to support it are associated with diets high in dependable
calorie-rich foods (16–18). Major expansion of the hominine
brain during human evolution appears to have coincided with the
development of new behaviors that added more calories to the
diet, such as eating meat (Homo habilis, ∼2.3 Mya) (19) and
cooking (Homo erectus, ∼1.5 Mya) (20).

Social behavior seems likely to depend on homologous neural
mechanisms in humans and nonhuman primates (21). Novel
behaviors can evolve by connecting, repurposing (i.e., shifted to
serve a new function), or elaborating upon ancestral mechanisms
that originally served a different function (22), and the evolution
of social behaviors seems likely to follow this pattern. A striking
example of such elaboration and repurposing is the electro-
communication system of mormyrid fish. These fish have elec-
trosensory receptors that are part of their lateral line system, which
originally evolved to aid orienting and the detection of motion (23,
24). In mormyrids, the cerebellum, where sensations from the
lateral line system are processed, is greatly enlarged and serves an
important role in electrocommunication, a social function absent
in the ancestral state (23, 24). The evolution of the neuropeptide
oxytocin (OT) is another excellent example of repurposing for
social functions. The ancestral anxiolytic (25, 26), approach- and
tolerance-enhancing (27–29) roles of OT in early vertebrates may
have been coopted to support parental behavior and social bonding
in mammals.
In this review, we discuss recent evidence supporting the idea

that social behavior can be constructed from the basic building
blocks of nonsocial behaviors. In some cases, sociality is supported
by general-purpose mechanisms whereas others may require spe-
cial-purpose mechanisms. By “general purpose,” we mean that
a given mechanism is used generally across both social and non-
social domains whereas, by “special purpose,” we mean that
a given mechanism has a privileged role in the social domain.
Specialized mechanisms, such as the electrosensory receptor or-
gan of mormyrid fish tuned for species communication and face
identification cells in the temporal lobes of primates (30–33) and
ungulates (34), are more frequently found near the input stages of
social processing (i.e., receiving social information) whereas gen-
eralized mechanisms are more common near the output stages of
effector control (35). By contrast, a mixture of specialized and
generalized mechanisms appear to characterize intermediate
computational stages of processing that translate socially specific
inputs into motivational signals that guide learning and decision
making, ultimately resulting in motor commands that generate
behavior (36–38). Our review focuses on recent behavioral, neu-
robiological, and genetic findings supporting these general prin-
ciples. Selected examples used in this review to support our claim
are summarized in Table 1.
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Parallels Between Social and Nonsocial Behaviors
Many of our behaviors are driven by reinforcement, and we and
other animals seek a variety of rewards by foraging. Foraging is
one of the most primitive and basic behavioral states, being
a feature of essentially all motile, heterotrophic life. It is there-
fore unsurprising that foraging strategies are under strong se-
lective pressure for maximizing returns on investment. Animals
often forage for foods sparsely distributed in locally dense
patches (39). As an animal forages in a patch, resources are
depleted and the rate of energy intake slows. However, traveling
to a new patch may be costly and accompanied by uncertain
outcomes, leading to a decision to abandon a patch to maximize
its overall rate of consumption. The same principle applies to
many everyday decisions made by people. Because resources are
often patchily distributed, this model has broad applicability. The
optimal solution, known as Charnov’s Marginal Value Theorem,
is that a patch should be abandoned when the current rate of
consumption falls to the average for the overall environment
(39). This model has been remarkably successful at describing
the foraging behavior of a wide variety of organisms (40) and
recently has been applied to understand neural correlates of
foraging decisions (41, 42). In fact, foraging theory has also been
applied to problems far afield from its original purpose, in-
cluding the efficient design of web sites (43) and a description of
how computer programmers search for errors in code (44).
Organisms searching for information can be said to be “in-

formation foraging” (45). Like foraging for primary rewards, in-
formation foraging presents opportunities as well as costs. Costs
come in the form of missed opportunities to eat, drink, or sleep
because information-seeking behaviors often demand certain
postures or behavioral states incompatible with attentive orient-
ing, as well as social costs, such as aggression from conspecifics
and missed opportunities to interact with partners. Because social
information has reinforcement value (either positive or negative),

the basic problems studied by foraging theory may apply to the
acquisition of social information. A wealth of behavioral data
indicates that both humans and nonhuman primates actively seek
social information. Humans and nonhuman primates find social
stimuli to be intrinsically rewarding, and certain types of social
stimuli are more interesting and reinforcing than others (46–48).
For instance, even shortly after birth, human infants look longer
at faces than at similar nonface stimuli (49). Likewise, nonhuman
primates spend more time looking at pictures of faces directed
toward them compared with pictures of faces with averted gaze
(50), and direct their gaze more often toward higher-ranking than
lower-ranking animals (51). Furthermore, active social inter-
actions such as cooperative transactions (52, 53) or the oppor-
tunity to punish a traitor (54), which can be understood using
a game theoretic framework (55), can be as motivating as primary
rewards in humans. These observations support the hypothesis
that the brains of many animals, especially those of primates, have
evolved mechanisms that find social information rewarding and
worth foraging.
We propose that, because amajor function of the brain is to seek

resources, it is likely that mechanisms that evolved to support
foraging are readily repurposed to solve other, formally similar
computational problems. With respect to social behavior, if in-
formation about others is a valuable resource, then the biological
mechanisms underlying foraging decisions will be used to support
social information seeking (56). For example, opportunities and
costs associated with social information foraging are likely to en-
gage fundamental biological mechanisms for computing opportu-
nities and costs. Foraging mechanisms seem likely to have become
further specialized to cope with the unique demands of in-
terindividual dynamics that arise as a consequence of group living.
Another potential example of similarities between social and

nonsocial behaviors arises from the comparison of behavioral
responses to predators and social threats. In both cases, an imminent

Table 1. Summary list of selected examples from the current paper on how nonsocial functions are repurposed to serve social
functions throughout evolution

Biological units Type/region Nonsocial functions Social functions

Behaviors Foraging Reward-seeking, information-seeking
(39, 40, 43–45)

Social information-seeking
(46–50, 56)

Imminent threat response Reflexive, escape behavior (57) Gaze aversion (38, 48)
Distant threat response Cautious exploratory behavior (58) Social exploration (38, 48)

Neural circuits Posterior superior sulcus
(pSTS)

Multisensory integration, perceiving
intention from animacy (80, 82)

Gaze perception, gaze following (81, 83)

Lateral intraparietal
area (LIP)

Spatial orienting, motor planning
(84, 85)

Gaze direction, social value associated
with space (35, 86, 87)

Striatum (medial) Reward and learning (70, 72) Social image category, reward donation (37, 70)
Orbitofrontal cortex (OFC) Social image category, received reward

during social interactions, social network size
(36, 38, 93, 94)

Anterior cingulate sulcus
(ACCs)

Foraging decisions, performance
monitoring (41)

Foregone reward during social interactions (36)

Anterior cingulate gyrus
(ACCg)

Reward and learning (148) Shared and donated reward during social
interactions, social evaluation, other-regard,
mentalizing about others’ states of mind
(36, 71, 98–101)

Neuromodulators Oxytocin/vasopressin Water regulation, reproduction,
anxiolysis (25, 26, 105, 106)

Pair-bonding, parental care, selective aggression,
social salience, generosity, trust (27–29, 97, 107–114)

HPA axis Physical stress Psychosocial stress (social status) (115–117)
HPG axis Reproduction Social regulation/control, social opportunity

(social status) (118–122)
Serotonin Cardiac and gastrointestinal functions,

mood, memory, reward and learning
(133, 134)

Social network integration, social structure,
social information processing (124, 141, 142)

Numbers in parentheses are references cited in the current review.
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threat evokes fast, reflexive behaviors, such as freezing, defensive
aggression, or escape behavior (57). A distant threat, however,
elicits cautious exploratory behavior of the threatening object
(58). Rhesus macaques, when given the opportunity, will opt to
view pictures of dominant monkeys, a potentially threatening
social stimulus, over pictures of subordinates (38, 48). Despite
this interest, low-status monkeys typically avert their gaze from
high-status monkey faces when confronted (48) and look quickly
away from dominant male pictures after choosing to see them
(48). This behavior is reminiscent of the exploratory behavior
of rodents confronted with cat odor (58) and the avoidance
behavior in the presence of an actual predator. Indeed, many
fundamental behavioral strategies designed for nonsocial set-
tings seem to resonate across behavioral strategies used in
social settings.

Neural Circuits Guiding Social Decisions
The neural mechanisms supporting social behaviors are broadly
distributed throughout the primate forebrain, overlapping with
areas involved in more general-purpose functions (Fig. 1A).
Current evidence suggests that most neural circuits involved in
social behavior are not dedicated exclusively to “social” func-
tions. Rather, such circuitry is also typically engaged in related
nonsocial behaviors, regardless of whether social information is
processed in a privileged manner (i.e., special purpose) or not
(i.e., general purpose). This evidence supports the hypothesis that
the evolution of novel social behaviors has occurred by coopting
existing neural hardware for the purpose of interacting with others.
Broadly speaking, these circuits can be thought of as organized

into input, integrative, and output stages of social processing.
The input stage of social processing comprises specialized sen-
sory channels that transduce socially important information, in-
cluding face-selective (59) and identity-specific cells (60) in primates,
pheromone-sensing systems like the vomeronasal organ in rodents
(61), and specialized regions for species-specific vocalizations in

birds (62) and mammals (63, 64), and language in humans (65).
The output stage of social processing comprises socially-specific
motor patterns, including highly stereotyped behaviors like allog-
rooming (66), ritualized play (67), and threat and submission
gestures (68). In the integrative stages of social information pro-
cessing, studies in humans have shown that phenomena such
as opprobrium and moral disgust rely in large part on circuits
involved in nociception and interoception, particularly those
linking the amygdala, periaqueductal gray, insular cortex, and
anterior cingulate cortex (ACC) (69). Experiments in both humans
and other animals have shown that information about socially rel-
evant stimuli such as attractive faces, bodies, and rewards delivered
to others activate regions likewise implicated in nonsocial reward
(35, 36, 38, 70–74). These results are consistent with the idea that
social processing is largely built upon and extended from other
nonsocial computations by these neural circuits.
The demands of dynamic social interactions are likely to have

further shaped the functions of neural circuits involved in social
behavior (i.e., selection on a mechanism for a specific function).
Humans and other primates clearly elaborate upon the afore-
mentioned basic, relatively stereotyped patterns of social be-
havior. For example, both human and nonhuman primates can
covertly attend to a specific location in space without looking at
it directly (75, 76), a behavior that seems likely to have evolved to
support monitoring of others in social groups (77, 78). Watching
another individual shift gaze to an object or location in space
typically evokes a gaze shift, as well as a shift in covert attention,
in the same direction, in humans and other nonhuman primates
(79). This gaze-following response depends upon neural circuits
involved in decoding where another individual is looking, and
circuits that orient attention and plan gaze shifts. Neurons in the
primate superior temporal sulcus (STS) are involved in the in-
tegration of converging inputs from multiple sensory modalities
(80). A posterior portion of STS (pSTS) seems to have evolved
the specialized function of perceiving the gaze of other individ-
uals (81) as well as intention implied from animacy (82). Con-
sistent with its role in gaze perception, inactivating pSTS with
muscimol abolishes gaze-following in rhesus macaques (83) (Fig.
1B). Neurons in the primate lateral intraparietal area (LIP), an
area important for spatial attention and the oculomotor planning
(84, 85), are activated by the mere observation of a monkey
looking toward the region of space covered by the neurons’ re-
ceptive fields (86) (Fig. 1C). Unlike pSTS, however, inactivating
LIP has no specific impact on gaze following (87), consistent with
a more generalized role in visuomotor behavior.
As mentioned previously, both human and nonhuman pri-

mates are highly motivated by social information. Social in-
formation activates key reward areas in humans and nonhuman
primates, including the ACC, orbitofrontal cortex (OFC), nu-
cleus accumbens, and caudate nucleus (36–38, 70–74). These
observations suggest the possibility that social information and
information about primary motivators like food are translated
into a common framework or currency that drives both learning
and decision making (88). When monkeys choose between fluid
rewards and information about others (38, 48), neurons in area
LIP simultaneously encode the social value and fluid value as-
sociated with a target in space, consistent with a common cur-
rency of target/action value (35). By contrast, neurons in the
primate striatum, particularly the medial aspect, appear to be
more specialized for signaling social information (37). In mon-
keys choosing between fluid rewards and information about
others, similar proportions of neurons (∼30–35%) carried in-
formation about fluid outcomes and social image outcomes, but
these populations were largely nonoverlapping. Thus, multiple,
unique, small ensembles of striatal neurons appear to convey idi-
osyncratic yet highly specific information about motor responses,
contexts, cues, outcomes, or combinations thereof, and this orga-
nization extends to social behavior.
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Fig. 1. Example neural circuits coopted to serve social functions. (A) Rep-
resentative brain regions in rhesus macaques whose preexisting functions
encompass reward, attention, perception, and executive control. (B) Point of
subjective equality (PSE), bias for socially-cued target in terms of foregone
juice, after saline or muscimol injections in pSTS. Reproduced from (83) with
permission from Oxford University Press. (C) LIP neuron showing firing rate
enhancement by observed gaze directed toward the receptive field (RF).
(Upper) RF map. (Lower) Neuronal activity as a function of time. Reproduced
with permission from ref. 86.
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TheOFC also encodes the value of rewards like food andmoney
(89). Like the striatum, OFC also contains neurons specialized for
social interaction. We found that even when monkeys’ choices
were dominated by the value of fluid rewards, the responses of
∼50% of neurons encoded social information, but only ∼20%
encoded information about fluid rewards (Fig. 2A) (38). As in
striatum, these populations of neurons were largely distinct, but,
unlike striatum, they were anatomically intermingled. Notably,
individual OFC neurons also signaled categorical information with
respect to images of other monkeys (Fig. 2A). On the basis of its
connections to gustatory, olfactory, interoceptive, and limbic sys-
tems, OFC has been proposed to function as a feeding circuit (90–
92). Thus, the observation that more neurons responded to social
information than to fluid reward supports the idea that ancestral
neural adaptations are repurposed to serve social functions. These
findings, along with the observed relationship of OFC size to social
network size in humans (93) and group size across primates (94),
suggest that OFC is part of a specialized neural circuit that evolved
concomitantly with increasing sophistication of social behavior.
Highly specialized neural mechanisms may be required to

support complex social interactions that depend on the behavior
and intentions of other individuals. This process may require the
brain to encode sensory, motor (95), and even reward informa-
tion in multiple frames of reference (36). We recently inves-
tigated how neurons in three frontal cortical areas—anterior
cingulate gyrus (ACCg), anterior cingulate sulcus (ACCs), and
OFC—encoded reward information while monkeys decided to
deliver juice to themselves, to a recipient monkey, or to no one
(36). In this social reward-allocation task, monkeys tend to prefer
to reward someone over no one, and this prosocial preference is

magnified by familiarity and dominance status (96) and significantly
modulated by neuropeptide OT (97). We found remarkable spe-
cializations in the way neurons in these three areas encoded reward
information in this social task. OFC neurons predominantly sig-
naled rewards directly received by the donor monkey, revealing
its egocentric encoding scheme; ACCs neurons predominantly
signaled rewards foregone by the donor monkey, a process critical
for monitoring outcomes and learning; and ACCg neurons sig-
naled rewards delivered to the recipient or mirrored rewards
delivered to either the donor or the recipient, indicating spe-
cialized functions for other-regarding social behaviors (36) (Fig.
2B). These findings resonate with previous work showing that
lesions in ACCg, but not ACCs or OFC, lead to deficits in un-
derstanding the meaning of social cues in monkeys (98) and the
activation of medial prefrontal and gyral portions of ACC in
humans by observing events occurring to others or thinking about
others’ states of mind (71, 99–101). Together, these observations
suggest that ACCg is a key structure supporting shared experi-
ence and social reward and may be specialized in human and
nonhuman primates to support complex social interactions.

Neuromodulatory Influences on Social Behavior
Differences between species or between individuals within a species
may reflect neuromodulatory influences on the development and
function of neural circuits mediating social and nonsocial behaviors.
Hormones strongly influence brain development (102, 103) and
shape the expression of fundamental behaviors like feeding, fleeing,
fighting, and mating (104). Neuropeptides (peptides used by neu-
rons to communicate with one another) set the tone for state-spe-
cific neuronal signaling by altering chemical transmission within
individual neurons as well as across networks of neurons (104). For
example, OT cells in the paraventricular and supraoptic nuclei
synchronize their activity to achieve coordinated neurosecretary
bursts required for milk ejection during lactation (105).
Neuropeptides involved in these primary functions are often

recruited to mediate social behavior. The nonapeptides OT and
arginine vasopressin (AVP) nicely illustrate this principle. Both
OT and AVP are involved in basic reproductive functions in
mammals, including parturition and lactation in females and
erection and ejaculation in males (106). Building on pioneering
work demonstrating a role for OT in maternal behavior in rats
(107), a series of elegant studies in voles has revealed that OT
and AVP also regulate social behaviors like pair bonding (108)
and selective aggression (109). More recently, it has been shown
that exogenous application of OT can promote emotions like trust
(110) and encourage generosity (111), in a context-dependent and
sometimes idiosyncratic fashion (112).
Recently, we demonstrated that OT inhaled via a nebulizer

effectively penetrates the central nervous system in rhesus mac-
aques (97) (Fig. 3A), endorsing the potential promise of OT in-
halation therapy in individuals with neuropsychiatric disorders
marked by social deficits (5). Increasing OT levels in the brain via
inhalation also promotes prosocial decisions in monkeys as well as
their attention to a social partner (Fig. 3 B and C). Surprisingly,
OT also promotes selfish decisions in the same task when there is
a perceived cost (97) (Fig. 3B). Furthermore, a recent study in
chimpanzees has shown that a rise inOT levels following grooming
depends on whether the two animals have strong bonds (113),
suggesting that the OT system has been further specialized to
process partner-specific affiliative interactions. Together, these
observations endorse the idea that neuropeptides like OT, which
serves basic sexual and parenting functions, can be coopted to
regulatemore complex social behaviors in species that live in large,
complex groups, like humans and rhesus macaques.
Ultimately, neuropeptides like OT may impact even complex

social behavior via a basic set of mechanisms. The anxiolytic
effects (25, 26) of OT may have served as a preadaptation for
the prolonged interaction necessary for high-intensity parental
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care in mammals by promoting approach behavior and enhanc-
ing tolerance (27–29). These basal functions could then serve as
building blocks for more complex social behaviors. Suppressing
vigilance and increasing tolerance to nonoffspring may permit
extended interactions with others. Ultimately, complex emotions
like trust may arise via reduced social apprehension and enhanced
tolerance, under the regulatory influence of neuropeptides like
OT (114).
Other neuromodulatory systems also contribute to variation in

social behavior. For example, the hypothalamic–pituitary–adrenal
(HPA) axis has long been associated with social status in primates
(115, 116) and may play a critical role in the production of be-
havior. Yellow-bellied marmots were shown to be more likely to
emit alarm calls during periods in which their HPA axis activity
(measured by fecal cortisol concentrations) was high compared
with periods during which it was low (117). The hypothalamic–
pituitary–gonadal (HPG) axis also shapes social behavior in ver-
tebrates. According to the “challenge hypothesis,” males’ an-
drogen levels are modulated according to context-dependent
requirements for aggressive behavior (118), and this prediction
has been substantiated broadly among vertebrates (119). In
rhesus macaques, modulations of testosterone levels in response
to social challenge are also dependent on social rank (120). Male
social status in African cichlid fish is regulated by gonadotropin-
releasing hormone 1, a hormone critical for reproduction, at
various levels of neuronal processing (121, 122). These findings
resonate with the idea that preexisting signaling pathways, in
this case pathways that regulate stress and mating behaviors, are
repurposed to shape the development and function of neural
circuits mediating social behavior. Through duplication, repur-
posing, and dynamic regulation of elements, a relatively limited
toolkit of basic hormonal mechanisms can be used to generate
a wide array of social behavior.

Genetic Regulation of Social Behavior
The influence of genes on social behavior is undeniable because
genes shape the neural circuits that produce behavior (123). The
adoption of preexisting biological mechanisms for social purposes,
and indeed the evolution of social behavior in general, must,
therefore, have roots in genetic change, or, in more Darwinian
terms, must be based on modification through descent of inherited
material. One hint that social behavior influences change in gene
pools over time is a handful of studies linking sociality with fitness.
In species such as baboons and rhesus macaques, engaging in so-
cial interactions is correlated with reproductive output; the off-
spring of individuals that spend a greater amount of time grooming
and associating with others are more likely to survive to 1 y of age
(12, 124). This correlation, in female baboons at least, seems to be
driven by the quality of social relationships as individuals with the
strongest, most enduring social bonds have higher offspring sur-
vival (125) and greater longevity (126) than others. These findings
suggest that there are adaptive benefits to interacting with others
and that social behavior is shaped by natural selection.
However, such findings beg confirmation that social tendencies

actually have a genetic basis and ask that we explore the roles of
environment and experience in shaping the impact of genes
on behavior. Quantitative genetic analysis is a tool that allows
researchers to determine the amount of variance in a trait that can
be attributed to genes, otherwise known as the amount of additive
genetic variance or heritability. Using this technique, dimensions
of human personality, including sociability, have been shown to be
heritable (127). Similar findings show that the behavioral ten-
dencies of a number of vertebrate species, including some non-
human primates (128–130), are heritable, thus pointing to a
(partly) genetic basis for primate social behavior. Not only are
social components of personality heritable, but so too is the extent
to which individuals are integrated into their social networks in
both humans (131) and rhesus macaques (124). This integration
includes social network connections mediated by multiagent rela-
tionships, such as friend-of-a-friend relationships. Such indirect
social connections might be emergent properties of a social network
or reflect meaningful aspects of the way individuals navigate large
groups. Nevertheless, humans exploit these connections, and our
actions (consciously or not) are influenced by them via reputa-
tion, one of the primary mechanisms believed to underlie the
evolution of cooperation in humans (132).
Genetic information also shapes the specific proximate mech-

anisms that underlie the processing of social information and ex-
pression of social behavior. An excellent example is the serotonin
pathway. Serotonin is involved in a host of peripheral functions,
including cardiac and gastrointestinal functions (133). Centrally,
serotonin regulates mood, memory, and reward (133, 134). The
serotonin pathway is also involved in the expression of social be-
havior. Genetic studies have tied this neuromodulatory pathway
to social behavior in humans and other primates, with variants of
two serotonergic genes having been examined in particular depth:
a variable insertion in the gene encoding tryptophan hydroxylase
(TPH2), the rate limiting enzyme in serotonin synthesis, and the
5HTTLPR (serotonin-transporter-linked polymorphic region)
polymorphism within the promoter region of the serotonin trans-
porter gene (SLC6A4, solute carrier family 6 member 4). Both
variants have orthologs in humans and rhesus macaques, have
been associated with altered development of several brain regions
(135, 136), and may influence the intensity and duration of sig-
naling at serotonergic synapses (135, 137).
Both TPH2 and SLC6A4 have been associated with social be-

havior phenotypes and endophenotypes, many of which are likely
to have strong ties to serotonin’s central functions, such as the
regulation of reward. For example, both genes have been implicated
in neuropsychiatric diseases, such as autism and depression (138,
139), which are partly characterized by disruptions in social
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attention and interaction, and are accompanied by differences in
brain response to social stimuli (140). The 5-HTTLPR poly-
morphism predicts social avoidance in rhesus macaques in re-
sponse to familiar dominant face images across many contexts.
Specifically, rhesus macaques with a copy of the “short” allele
spend less time looking at the eyes of other monkeys, show
greater pupil dilation—a peripheral index of arousal—when
viewing dominant faces, shy away from risk after being primed
with dominant faces, and typically avoid dominant faces during
a reward-guided decision-making task (141) (Fig. 4A).
Across the genus Macaca, the 5-HTTLPR polymorphism has

been related to social structure, with more despotic species, such
as the rhesus macaque, possessing both long and short numbers
of repeats, whereas purportedly less despotic macaque species
are monomorphic for the long allele (142). This finding may
suggest that this polymorphism confers resilience to psycho-socio
challenges (143) but may also point to the interplay between
serotonin, social behavior, reward, and risk aversion. Heightened
social vigilance may confer particular advantages in the com-
petitive situations that occur more frequently in despotic socie-
ties (144). The 5-HTTLPR polymorphism is associated with
differential activation of a number of brain regions associated
with affiliative behavior (e.g., ACC, insular cortex) (145), leading
to speculation that serotonergic gene profiles play a role not only
in competition, but also in positive social interactions (145).
We recently found preliminary evidence supporting this hy-

pothesis in a study of rhesus macaques living in a free-ranging
colony on Cayo Santiago Island, Puerto Rico. An individual
monkey’s position in the social (grooming) network was predicted
by the interaction between the 5-HTTLPR and TPH2 length
polymorphisms. Either mutation alone had no effect on network
position, but monkeys with the rare allele of both genes were less
well-integrated socially (124) (Fig. 4B). Overall, these results

suggest that genetic factors that influence the development and
functioning of the serotonin system shape primate social behavior.
Serotonin-related genes therefore may be viewed as a valuable
example of “candidate genes” that provide tractability to empirical
questions about the interaction of genes, neural circuits, and social
behavior. These tantalizing findings require further study to un-
derstand the specific genetic contributions of this system and other
neuromodulatory systems to various aspects of social behavior
and cognition.
It is fitting to end a survey of the neuroethology of social be-

havior on a genetic note, as in doing so we return to the very roots
of evolutionary change. Genetic information not only represents
a powerful tool to investigate the proximate bases of social be-
havior, but also allows us to establish direct links between sociality
and evolutionary fitness, the ultimate driving force behind natural
selection. Genetic information exposes the dynamic contingencies
upon which sociality is based, where the interactions between
genes that lay the foundations of neural architecture and the so-
cial, physical, and biochemical environments in which those genes
exist are brought to light, and wherein lie some of the greatest
challenges facing future researchers hoping to understand this
complex and enigmatic trait.

Concluding Remarks
Social information is clearly valuable—it is worth foraging, often
receives privileged attention over other types of information, and
is inherently rewarding. The social environment is rife with in-
formation and tinged with uncertainty, and as a result much of our
mental machinery is applied to reducing the cognitive load of
social interaction. Social behaviors impact evolutionary fitness (12,
124), suggesting they are critical for survival and reproduction.
Biological mechanisms that primarily functioned to mediate
nonsocial behaviors in the ancestral state have been repurposed in
some species, like humans and rhesus macaques, to mediate social
behavior. Biological mechanisms are rededicated and further
modified for social functions at multiple levels of organization,
from neurons and circuits, to hormones and genes. It is important
to note, however, that social behavior also feeds back upon these
mechanisms to shape their structure and function. Manipulations
of social network size in rhesus macaques alter cortical thickness
and functional coupling across brain areas that support social
functions (146). Epigenetics and gene regulation are also essential
to guiding changes in neural development and social behavior
(116, 121, 147). Epigenetic changes that are related to reinforcement
and learning might be particularly powerful and are important
directions for future research.
A neuroethological approach to the study of human and non-

human primate social behavior is powerful in the extent to which it
is encompassing and holistic. By presenting the evolution of social
behavior through a lens of nonsocial functions, we have provided
evolutionarily parsimonious lines of reasoning and evidence, along
with tractable avenues for future research. For many human psy-
chopathologies, the interactions between social and nonsocial def-
icits are poorly understood. Greater comprehension of the general-
purposemechanisms that generate social action and translate social
signals may therefore improve disease diagnosis and treatment.
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