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SUMMARY

Foraging for resources is a fundamental behavior
balancing systematic search and strategic disen-
gagement. The foraging behavior of primates is
especially complex and requires long-term memory,
value comparison, strategic planning, and decision-
making. Here we provide evidence from two different
foraging tasks that neurons in primate posterior
cingulate cortex (PCC) signal decision salience dur-
ing foraging to motivate disengagement from the
current strategy. In our foraging tasks, salience re-
fers to the difference between decision thresholds
and the net harvested reward. Salience signals
were stronger in poor foraging contexts than rich
ones, suggesting low harvest rates recruit mecha-
nisms in PCC that regulate strategic disengagement
and exploration during foraging.

INTRODUCTION

Animals forage for a wide range of resources (Stephens and

Krebs, 1986), making a series of sequential, non-exclusive,

accept-or-reject decisions (Stephens, 2008; Calhoun and Hay-

den, 2015). Hypothesized as a major selective pressure driving

the expansion of neocortex in primates (Milton, 1988; Genovesio

et al., 2014; DeCasien et al., 2017), foraging is a fundamental

cognitive skill (Newell, 1994; Hills et al., 2010) applicable in a

variety of domains, including search (Cain et al., 2012; Wolfe,

2013), memory (Hills et al., 2015), and social (Hills and Pachur,

2012; Turrin et al., 2017) and executive processing (Payne

et al., 2007;Wilke et al., 2009; Metcalfe and Jacobs, 2010; Payne

and Duggan, 2011). Despite widespread relevance, the neural

circuits mediating foraging have only recently begun to be

described (Hayden et al., 2011; Kolling et al., 2012; Shenhav

et al., 2014).

The anterior and posterior cingulate cortices, strongly and

reciprocally connected (Heilbronner and Haber, 2014), are both

implicated in control (Botvinick et al., 2004; Pearson et al.,

2011). During foraging, dorsal anterior cingulate cortex (dACC)
carries signatures of reward-based computations (Hayden

et al., 2011; Kolling et al., 2012; Shenhav et al., 2014), but the

role of the posterior cingulate cortex (PCC) remains unknown.

Neuroimaging studies link PCC activity with value (Kable and

Glimcher, 2007; Knutson and Bossaerts, 2007), strategy (Wan

et al., 2015), and change detection (Summerfield et al., 2011;

McGuire et al., 2014). PCC neurons signal rewards (McCoy

et al., 2003), risk (McCoy and Platt, 2005), task switches (Hayden

andPlatt, 2010), and exploratory decisions (Pearson et al., 2009).

In addition, microstimulation of PCC provokes preference rever-

sals (Hayden et al., 2008) and inactivation impairs learning (Heil-

bronner and Platt, 2013). This diverse array of observations may

reflect computations that regulate foraging behavior.

Here we show PCC neurons signal salience in motivating de-

cisions to disengage during foraging. Salience refers to atten-

tional capture by environmental events (Treisman and Gelade,

1980; Gottlieb et al., 1998) or decision outcomes (Pearce and

Hall, 1980; Esber and Haselgrove, 2011; Kahnt et al., 2014),

and regulates stimulus processing (Corbetta and Shulman,

2002), learning (Yu and Dayan, 2005), and motivation (Brom-

berg-Martin et al., 2010; Kahnt and Tobler, 2013). PCC neurons

are known to signal outcome salience, including reward size

(McCoy et al., 2003), omission (McCoy et al., 2003), and variance

(McCoy and Platt, 2005), as well as offer salience, the absolute

difference of option values from a standard (Heilbronner

et al., 2011).

Here we report that foraging salience, defined as the abso-

lute difference between experienced and threshold cumulative

reward, regulated strategy in two separate foraging tasks

involving distinct decisions to disengage. In the patch foraging

task, monkeys chose between harvesting reward from a di-

minishing source and disengaging to forage in a new one. In

the traveling salesman task, a circular array of targets was

baited unpredictably with large and small rewards. Monkeys

developed routine circular patterns of target exploitation,

known as a trapline in behavioral ecology (Berger-Tal and

Bar-David, 2015; cf. Freeman, 1968 after Darwin). In both

tasks, PCC neurons forecast decisions to disengage and

signaled foraging salience, with stronger signals in poor envi-

ronments than rich ones. Our results suggest PCC neurons

signal foraging salience to promote strategic disengagement

and exploration.
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Figure 1. Patch Foraging Task Reveals Sensitivity of Monkeys to Salience during Foraging

(A) The patch-leaving task. Monkeys fixate on the central cross for 400–800 ms. Fixation then extinguishes and targets appear. If monkeys choose the small blue

rectangle (stay in patch option), then a small reward is delivered after a brief delay (handling time; 400 ms) followed by 1 s intertrial interval (ITI) and beginning of a

new trial. Reward associatedwith the stay in patch option also decreases by a small amount. If monkeys choose the large gray rectangle (leave patch option), they

must wait through a timeout period corresponding to the height of the gray bar, and do not receive reward. This is followed by 1 s ITI and beginning of a new trial in

a new patch. At onset of a new patch, reward associated with the blue rectangle resets to a constant initial amount, locations of the blue and gray rectangles are

swapped, and a new height for the gray bar, signaling the travel timeout to replenish the patch, is selected from a uniform distribution, which correlates with a

delay ranging from 0.5 to 10.5 s.

(B) Time in patch plotted as a function of travel time. As travel times grew, monkeys stayed longer in a patch. Total of 3,511 patches in 43 electrophysiology

sessions across both monkeys.

(C) Probability of leaving a patch versus the decision variable for three different behavioral models. Black circles: mean observed probability of leaving a patch for

the corresponding value of the decision variable. Red lines: predicted leave probability. All three plots display a logistic regression of leave or stay decisions

against the decision variable. Left panel, net reward foraging model; middle panel, optimal foraging model; right panel, salience foraging model.

(D) Recording locations for both monkeys.
RESULTS

Travel Times and Foraging Salience Drive Patch-
Leaving Decisions
In the patch-leaving task, monkeys (M. mulatta) decided to har-

vest reward froma depleting patch or to disengage and replenish

it (Figure 1A). They made a series of decisions to harvest a juice

reward that decreased over time as it was repeatedly chosen

(initially 0.3 mL, decreasing in �0.02 mL steps) or to reset the

value of the patch, incurring a ‘‘travel time’’ that varied from

patch to patch. Patch residence time increased as travel times

increased (Figure 1B), corroborating prior observations (Hayden

et al., 2011) (linear regression, p < 0.00001, b = 1.40; Monkey
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L [ML], p < 0.00001, b = 1.11; Monkey R [MR], p < 0.00001,

b = 1.50).

We considered three models of patch-leaving decisions: an

optimal foraging model based on the marginal value theorem

(MVT; Charnov, 1976), a net foraging model based on survival

analysis (Fox, 2001), and a saliencemodel inspired by attentional

learning theory (Pearce and Hall, 1980). The optimal foraging

model set the decision variable to the difference between the

current reward rate and the MVT-calculated optimal reward

rate for departing a patch. The net foraging model captured

the central tendencies of the decision to leave a patch by setting

the leave threshold to the mean of the exponential reward intake

function and setting the decision variable to the reward
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Figure 2. PCC Neurons Predict Patch Departures Several Seconds in Advance

(A) Sample cell PSTH starting 15 s before patch departure. This cell shows amarked increase in firing (thick black line) during the 15 s patch exit window. Red line:

linear fit to firing rate within the patch exit window. Black tickmarks: sample raster plots from 20 patches.

(B) Same cell as in (A), showing differences in firing dynamics depending on environmental richness preceding decisions to leave a patch. Rich contexts (red

trace), reward rate Z score R 0; poor contexts (blue trace), reward rate Z score < 0.

(C) Population plot for rich and poor environments, matching the pattern observed in the sample cell in (B). n = 159 cells (96 from ML and 63 from MR).

(D) Salience coefficients plotted against the interaction of time and reward rate coefficients. Later and lower reward rates resulted in stronger salience signaling.

See also Figure S3. See Figure S1 for individual monkey results.

In all plots, thick lines, mean; shading, ±1 SEM.
differential, the difference between the current net harvested

reward computed over the whole patch and threshold net har-

vested reward computed from the mean of the intake function.

The salience foraging model set the decision variable to the

product of the reward differential and weighted salience, the

absolute value of the reward differential.

The salience foraging model provided the best fit to patch-

leaving decisions (Figure 1C; mean AIC score ± SEM: net

foraging model: 509.87 ± 28.88; ML, 400.50 ± 31.45; MR,

604.97 ± 36.73; optimal foraging model: 488.65 ± 28.50; ML,

373.23 ± 29.57; MR, 589.02 ± 35.46; salience foraging model:

398.75 ± 26.60; ML, 272.80 ± 21.27; MR, 508.27 ± 31.84;

STAR Methods). Corroborating these fits, response times were

faster for more salient choices (linear regression by day of

response times versus salience; ML, mean b = �0.022 ± 0.025,
Student’s t test, p > 0.39, t(19) = �0.88; MR, mean b = �0.13 ±

0.0089, Student’s t test, p < 1 3 10�12, t(22) = �14.94).

PCC Neurons Forecast Leave Decisions and
Dynamically Signal Salience during Patch Foraging
We recorded activity of 159 PCC neurons (Figure 1D; 96 in ML

and 63 inMR; individual monkey results in Figure S1). Firing rates

predicted patch-leaving decisions many seconds in advance by

ramping up or down in the last 15 s in patch (example cell, Fig-

ure 2A; patch exit epoch; linear regression during patch exit

epoch, p < 1 3 10�20, b = 0.20 ± 0.020). Eighty-six (54%) of

159 cells showed a significant increase or decrease in activity

approaching patch exit (linear regression during patch exit,

p < 0.05). This pattern is reminiscent of ramping of neuronal

activity to a threshold observed for perceptual and foraging
Neuron 96, 339–347, October 11, 2017 341



decisions (Gold and Shadlen, 2007; Hayden et al., 2011) but

extended continuously across multiple actions. We focused

the remaining analyses on this patch exit epoch.

Because PCC neurons signal and causally facilitate learning in

low-value contexts, but not high ones (Heilbronner and Platt,

2013), we next queried whether PCC neurons signal patch de-

partures differently in distinct reward rate contexts. Reward

rate was defined as the net reward harvested in a patch divided

by time spent harvesting. Poor environments presented low

(Z score < 0) reward rate decision contexts and rich environ-

ments presented high (Z score R 0) ones. An example neuron

showed a significant increase in firing rate preceding the deci-

sion to leave the patch in poor environments (Figure 2B; linear

regression, p < 13 10�23), but not rich ones (p > 0.4). The slopes

of these regressions differed significantly (ANCOVA, p <

13 10�13, F(1,596) = 62.57). Environmental richness modulated

this neuron’s ramping activity across patches (linear regression

of patch-by-patch slopes versus Z scored reward rate,

p < 0.001), a pattern seen in the slopes of 20 (13%) of 159 cells

(linear regression, p < 0.05). This pattern was also evident in the

average population activity (Figure 2C; linear regression; poor,

p < 1 3 10�9; rich, p > 0.35; ANCOVA, p < 0.00005,

F(1,596) = 17.21).

The observation that firing rates of PCC neurons predict im-

pending patch departures prompts the question of whether

PCC neurons also signal salience, and if so, whether salience

signals vary with environmental richness. Rich environments

may attenuate salience signaling because the current strategy

remains profitable. Combined with differences in ramping across

contexts, the dependency of salience signaling on environ-

mental richness predicts a three-way interaction during the

patch exit epoch between time, reward rate, and salience. Spike

counts in 50 ms bins were regressed against all three covariates

and all interactions using a generalized linear model (GLM) with a

log-linear link function and Poisson distributed noise. Of 159

neurons, 25 (16%) showed significant interactions of all three

covariates (ML, 17 [18%] of 96 neurons; MR, 8 [13%] of 63 neu-

rons; STARMethods). To examine temporal dynamics, all spikes

in a sliding boxcar (3 s width, 50 ms steps) were regressed

against reward rate, salience, and their interaction (Figure S3A,

cells sorted from negative [top] to positive [bottom] by the sum

of the beta coefficients). This analysis revealed a pattern of pos-

itive and negative salience coefficients over time, with some cells

positively signaling foraging salience and others negatively, indi-

cating PCC neurons do not store salience information between

patch-leaving decisions.

Context-dependent salience signaling also predicts stronger

salience signals in poor environments. Coefficients for salience

were negatively correlated with coefficients for the interaction

of reward rate and time in patch (Figure 2D; linear regression,

b = –0.17 ± 0.042, p < 0.0005), confirming this prediction.

Finally, this context dependency predicts the influence of

salience on firing rates in poor patches should be larger than in

rich ones. We regressed spike counts during the whole trial

epoch (1 s before choice to 1 s after) against salience for poor

and rich patches separately. In rich environments, there was

no population-level effect of salience (linear regression, mean

b = 0.098 ± 0.090, Student’s t test, p > 0.27, t(158) = 1.10). By
342 Neuron 96, 339–347, October 11, 2017
contrast, in poor environments, greater salience was accompa-

nied by increased average firing rates in the whole population

(mean b = 0.48 ± 0.18, p < 0.01, t(158) = 2.67). The influence of

salience was also larger in poor environments than in rich ones

(Student’s t test, mean Db = 0.38 ± 0.18, p < 0.05, t(158) = 2.16).

Monkeys Trapline Forage to Solve a Traveling Salesman
Problem
In our traveling salesman task, monkeys visually navigated

through a circular array of six targets (Figure 3A). Two targets

were randomly baited on each trial, one with large and one

with small reward. Monkeys spontaneously developed traplines,

defined as a set sequence of choices. They typically chose tar-

gets in the same sequence across days, tracing a circle, the

most efficient route (the daily dominant pattern, DDP; ML,

same DDP across 24 of 30 sessions; MR, same DDP across all

14 sessions; Figure 3B; STAR Methods).

Thoughmonkeys usually chose targets in the same order, they

occasionally diverged from this routine, providing an opportunity

to investigate changes in foraging strategy in a second task.

Across all recording days, mean proportion of diverge trials

was high: 0.21 ± 0.017 of all trials (ML, 0.22 ± 0.025; MR,

0.18 ± 0.0078). To capture these divergences, the three foraging

models used in the patch foraging task were fit to monkeys’

choices on the traveling salesman task (STAR Methods).

Choices were coded as decisions to stay on the trapline or

diverge from it, excluding trials in which monkeys started with

an off-trapline choice. Again, the salience foraging model pro-

vided the best fit to decisions to diverge (Figure 3C; mean AIC

score ± SEM: net foraging model (3103): 1.80 ± 0.21; ML,

1.86 ± 0.29; MR, 1.66 ± 0.26; optimal foraging model (3104):

3.12 ± 0.22; ML, 3.01 ± 0.26; MR, 3.34 ± 0.44; salience foraging

model (3103): 1.73 ± 0.21; ML, 1.80 ± 0.29; MR, 1.58 ± 0.26;

STAR Methods). Corroborating these fits, response times were

faster for more salient choices (linear regression by day of

response times versus salience; ML, mean b = �0.058 ± 0.013,

Student’s t test, p < 0.0005, t(29) = �4.49; MR, mean

b = �0.039 ± 0.0090, Student’s t test, p < 0.001, t(13) = �4.28).

PCC Neurons Predict Path Divergences and
Dynamically Signal Salience during Traplining
Wepredicted that the patterns of neural activity observed in PCC

during patch foraging also would be evident during traplining. To

test this hypothesis, we recorded spiking activity of 124 new

neurons in the same two monkeys (Figure 1D; 84 in ML and 40

in MR; individual monkey results in Figure S2). Firing rates pre-

dicted when monkeys would diverge from traplines. In our pop-

ulation, 59 (48%) of 124 neurons signaled choices onwhichmon-

keys diverged from traplines (linear regression on spike counts

during anticipation epoch from 250 ms before choice saccade

to 250 ms hold fixation after, p < 0.05; STAR Methods), and 54

(44%) of 124 neurons predicted decisions to diverge from trap-

lines one choice in advance (linear regression on average firing

rates during anticipation epoch, p < 0.05). Forty-four (35%) of

124 neurons signaled diverge decisions in both conditions.

PCC neurons forecast divergences from traplines with phasic

responses, as illustrated by the example cell (Figure 4A) and

population response (Figure 4B). To quantify this difference,
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Figure 3. Monkeys Spontaneously Diverged from Traplines in a Traveling Salesman Task

(A) Traveling salesman task. Monkeys fixate on the central cross for 400–800 ms. Fixation extinguishes and targets appear. Monkeys are free to select targets in

any pattern, but must select all six targets to advance to the next trial. Two targets were baited, one with a small reward and one with a large reward (small and

large juice drops, respectively).

(B) Sample eye traces from 50 trials each for ML (top) and MR (bottom). Left panel shows eye traces; right panel lists the typical order in which targets were

selected (daily dominant pattern; DDP) for each monkey.

(C) Probability of diverging from trapline versus the decision variable for three different behavioral models, the same models as fit to the patch-leaving task

choices. Same conventions as Figure 1C.
mean firing rate in a 1 s epoch before divergence was compared

to the mean firing rate before the last non-diverge choice. Of 124

neurons, 59 (48%) fired more preceding diverge choices than

preceding non-diverge choices (Student’s t test, p < 0.05). An

example neuron (Figure 4A) showed higher firing rates on

choices immediately prior to diverging (Student’s t test,

p < 1 3 10�9, t(288) = 6.58). This same pattern characterized

the population response (Figure 4B), with higher firing rates prior

to decisions to diverge compared to non-diverge (Student’s

t test, p < 1 3 10�8, t(38) = 8.01).

Akin to the differences in patch-leave signaling in PCC

neurons, this predictive signaling for path divergences differed

in rich environments compared to poor. After sorting rich (reward

rate Z score R 0) and poor (reward rate Z score < 0) environ-

ments, the same sample neuron showed differences in predic-

tive signaling across contexts (Figure 4C), with higher firing rates

in poor environments (linear regression of mean firing rates by

trial versus Z scored reward rate, p < 0.005). The activity of

19 of 124 cells (15%) was correlated with reward rate (linear

regression, p < 0.05). Elevated activity in poor compared

to rich environments was also observed in the population pre-

ceding decisions to diverge (Figure 4D; linear regression,

p < 0.05).

We next explored whether PCC neurons signal foraging

salience during trapline foraging and if such signals depend
on environmental richness. The dependency of salience

signaling on environmental richness predicts a three-way inter-

action preceding a diverge decision between time, reward rate,

and salience. PCC neurons signaled the interaction between all

three covariates, albeit more weakly than during patch foraging:

of 124 PCC neurons, 13 (10%) signaled the interaction of all

three covariates (GLM, spikes sorted in 50 ms bins from first

choice in trial to diverge choice and regressed against time

before diverge, reward rate, salience, and all interactions, Bon-

ferroni corrected; ML, 9 (11%) of 84 neurons; MR, 4 (10%) of 40

neurons; STAR Methods). A sliding boxcar plot (Figure S3B)

revealed a much noisier but similar pattern of positive and nega-

tive salience coefficients as observed in the patch-leaving task

(Figure S3A).

Such context-dependent signaling also predicts a negative

correlation between beta weights for salience and for the interac-

tion of reward rate and time. Regression of the salience coeffi-

cients against coefficients for the interaction of reward rate

with time revealed a significant negative correlation (Figure 4E;

linear regression, b = –0.078 ± 0.021, p < 0.0005; ML,

b = –0.12 ± 0.030, p < 0.0005; MR, b = –0.012 ± 0.023, p > 0.5,

but with one outlier removed, b = –0.087 ± 0.045, p = 0.0612).

Finally, this context dependency predicts the strength of

salience coding in poor environments should be larger than in

rich ones. After sorting decisions by rich and poor contexts,
Neuron 96, 339–347, October 11, 2017 343
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Figure 4. PCC Neurons Predict Trapline Divergences in Advance

(A)Samplecell PSTHshowingelevatedactivityduring the inter-choice interval ofdiverge trials (purple trace)compared tonon-diverge trials (orange trace).D-1,mean

time of choice before diverge choice; ND-1, mean time of choice before last non-diverge choice. Tick marks, sample raster plots from 20 trials in each condition.

(B) Population plot for diverge (purple trace) and non-diverge (orange trace) trials. Same conventions as (A).

(C) Same cell as in (A), showing differences in firing dynamics depending on environmental richness preceding divergences. Rich contexts (red trace), reward rate

Z score R 0; poor contexts (blue trace), reward rate Z score < 0. Activity was elevated prior to diverge decisions in poor environments only.

(D) Population plot for rich (red trace) and poor (blue trace) environments.

(E) Salience coefficients plotted against time3 reward rate coefficients. Later and lower reward rates resulted in stronger salience signaling,matching observations

prior to leaving a patch (Figure 2D). See also Figure S3. In (B) and (D), n = 124 cells (84 from ML and 40 from MR). See Figure S2 for individual monkey results.

In all plots, thick lines, mean; shading, ±1 SEM.
we regressed spike counts during the whole choice epoch

(250 ms before choice to 500 ms after choice) against salience.

Just as in the patch foraging task, in rich environments there was

no population-level effect of salience (linear regression, mean

b = 0.12 ± 0.075, Student’s t test, p > 0.1, t(121) = 1.57), while
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one was observed in poor environments (mean b = 0.23 ±

0.084, p < 0.01, t(122) = 2.77). While the influence of salience

was greater in poor than rich contexts, this difference was not

statistically significant (Student’s t test, mean Db = 0.12 ±

0.098, p > 0.2, t(121) = 1.18).



DISCUSSION

In both tasks, the salience foraging model best described

behavior. Conceptually, salience reflects the occurrence of sta-

tistically improbable environmental events that are relevant to

an animal. Foraging requires tracking the environment in order

to detect and adapt to changes in the quality, spatial location,

and abundance of resources. Foraging salience provides an

efficient way to track the need to change behavior. We hypoth-

esize that the salience model best described behavior because,

unlike the optimal or net foraging models, it captures factors

that influence orienting (Simion and Shimojo, 2007) and atten-

tion (Orquin and Mueller Loose, 2013). Salience generally plays

an important role in allocating attention (Gottlieb et al., 1998) to

motivate behavior (Bromberg-Martin et al., 2010) or to learn

(Pearce and Hall, 1980), and can be thought of as an increase

in signal gain (Reynolds and Heeger, 2009) to enable faster

and more accurate stimulus processing. In the best-fit model,

foraging salience similarly serves as a multiplicative gain on cu-

mulative harvest.

Possible cognitive roles for foraging salience signals in PCC

include motivating disengagement, computing the value of

alternative options, and tracking choice difficulty. First, salience

signals may reflect integration of environmental information with

the goal of optimizing rewards by motivating disengagement.

Several neuroimaging studies of environmental change detec-

tion have reported activity in PCC reflecting integration of envi-

ronmental signals (Summerfield et al., 2011; McGuire et al.,

2014), and PCC neurons signal behavioral goals (Dean et al.,

2004), option values (McCoy et al., 2003), reward uncertainty

(McCoy and Platt, 2005), decision strategies (Pearson et al.,

2009), and decision salience (Heilbronner et al., 2011). In our

study, PCC neurons signaled foraging salience and the interac-

tion of salience with elapsed time and reward rate, a synthesis

of multiple sources of evidence that can be used to adapt

behavior to the environment. Salience signals in PCC were

also stronger in poor foraging contexts, suggesting control sig-

nals are amplified when strategic changes in behavior are

favored. Second, the observed signals may reflect the value

of searching for alternatives, similar to activity in dACC (Kolling

et al., 2012). In support of this, as the cumulative reward

approaches the threshold for leaving, salience decreases and

the value of disengaging increases in both tasks. Third, signals

observed in PCC may reflect choice difficulty. Recent debate

regarding dACC activity during foraging has explicitly con-

trasted the value of search with choice difficulty (Shenhav

et al., 2014). As the agent approaches the threshold net reward

for disengaging, salience decreases, making the decision more

difficult. Given our experimental design, we are unable to distin-

guish between these possibilities.

Foraging salience signals may be computed locally within

PCC, though imaging studies have failed to identify other types

of salience signals (Litt et al., 2011; Kahnt and Tobler, 2013;

Kahnt et al., 2014). Failure to find salience signals in PCC in

fMRI studies may reflect variation in the sign of salience signals

across the population and across time within the same neuron

(Figure S3). Salience signals may also be sent to PCC from other

areas. PCC is preferentially innervated by projections from locus
coeruleus (LC) and expresses a greater proportion of noradren-

ergic receptors than other cingulate regions (Bozkurt et al.,

2005). LC contributes to change detection (Nassar et al.,

2012), exploration (Jepma and Nieuwenhuis, 2011), and

outcome salience (Aston-Jones and Cohen, 2005) for orienting

attention (Corbetta et al., 2008) and learning (Sara and Bouret,

2012), potentially a source of salience signals in PCC. Alterna-

tively, salience signals have been observed in cortical areas con-

nected with PCC, including lateral prefrontal cortex (Kobayashi

et al., 2006), posterior parietal cortex (Kahnt et al., 2014), anterior

cingulate cortex (Litt et al., 2011; Kahnt et al., 2014), orbitofrontal

cortex (Ogawa et al., 2013) and temporoparietal junction (Kahnt

et al., 2014). PCC may integrate information from some or all of

these areas to compute foraging salience to adapt behavior to

the current environment (Pearson et al., 2011).

The framework of disengagement decisions covers many

cognitive behaviors that evolve over multiple actions and involve

many types of resources, both external and internal (Hills et al.,

2008). Foraging presents a powerful approach for studying

how decisions unfold overmultiple actions, andmay be the foun-

dation upon which more complex strategic decisions are built

(Pearson et al., 2014), a view supported by finding a common

set of neural computations regulating disengagement decisions

in patch leaving and traplining.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two mature (aged �6-9 years) male rhesus macaques (M. mulatta) participated. Monkeys were single housed in cages in a colony

room with other monkeys, allowing auditory and visual contact. Monkeys received daily enrichment and biannual health check-ups.

As of the beginning of the first task, one of the monkeys had been used on two previous experiments for both recording and inac-

tivation in PCC (ML) and one was naive (MR).

After initial behavioral training, a head-restraint prosthesis (titanium; Crist Instruments) and recording chamber (acrylic; Crist Instru-

ments) permitting access to PCCwere implanted using standard aseptic surgical techniques. All surgeries were performed in accor-

dancewith protocols approved by the Duke University institutional animal care and use committee andwere in accord with the Public

Health ServiceGuide to the Care and Use of Laboratory Animals. Monkeys were anesthetized using isoflourane, received analgesics

and antibiotics after surgery, and permitted a month to heal before any recordings were performed.

METHOD DETAILS

Twomonkeys were trained on both tasks, first the patch leaving task, followed by neural recordings, and then the traveling salesman

task, followed by neural recordings. Neural recordings began once a stable pattern of behavior emerged, within twoweeks of onset of

training for both tasks. For the patch leaving task, we regarded behavior as stabilized when a significant influence of travel time on

total time in patch emerged (cf. Houston and McNamara, 1999). For the traveling salesman task, we regarded behavior as stable

when monkeys exhibited the same pattern of choices (a trapline) over the course of five behavioral sessions.

During training and recording, monkeys’ access to fluid was controlled outside of experimental sessions. Custom software written

in MATLAB (MathWorks, Natick, MA, USA) using Psychtoolbox (Brainard, 1997) controlled stimulus presentation, reward delivery,

and recorded all task and behavioral events. Horizontal and vertical eye traces were sampled at 1000 Hz by an infrared eye-moni-

toring camera system (SRResearch, Osgoode, ON) and recorded using the Eyelink toolbox (Cornelissen et al., 2002). Solenoid valves

controlled juice delivery. All data were analyzed using custom software written in MATLAB.

Patch Leaving Task Behavioral Modeling
This task simulates a patch-leaving problem by presenting the animal with a two-alternative forced choice decision between

continuing to forage at a depleting resource and waiting to replenish the resource (Hayden et al., 2011; Figure 1A). To begin the trial,

the animal fixated (±0.5�) on a centrally presented cross for a random fixation time drawn from a uniform distribution (400 – 800ms). If

the animal prematurely shifted his gaze from the fixation cross before exhausting this time, the fixation clock resets to zero. If the

animal exhausted the fixation time, the fixation cross was extinguished and the targets, a small blue rectangle and a large gray rect-

angle, one each on the left and right side of the screen, were presented. The animal couldmake a choice by aligning gazewith a target

and holding it there for 250 ms. The animal was free to peruse the options, glancing back and forth without penalty or registration of

choice, so long as the choice fixation period was not exhausted.

If the monkey selected the blue rectangle, he was permitted to freely look about while the rectangle shrank at 65 pixels/s until it

disappeared. This shrink time simulated the ‘handling time’ for the food item, and was constant across all trials and reward sizes.

At the end of this handling time period, the animal received a squirt of juice, followed by a 1 s intertrial interval (ITI) and the reappear-

ance of the fixation cross. The reward size for the first trial in patch was always �0.30 mL of juice. As the animal continued to select
e1 Neuron 96, 339–347.e1–e5, October 11, 2017
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the blue rectangle (‘stay in patch’ decision), the amount of juice associated with that choice dropped each trial by �0.02 ± ε mL of

juice (where ε is a random term with mean = 0.002 mL and sd = 0.0001 mL). After a series of stay in patch decisions, the animal typi-

cally decided to select the gray rectangle (‘leave patch’ decision). After selecting that option, themonkey was free to look about while

the gray rectangle shrank also at 65 pixels/s. The height of the gray rectangle signaled the time-out penalty for leaving the patch (the

‘travel time’), and did not vary so long as the animal continued to stay in the patch. Once the monkey chose to leave, the gray bar

shrank, which was followed by a 1 s ITI and the reappearance of the fixation cross; no juice was delivered for this choice. On the first

trial in the ‘new patch’, three changes occurred. First, the juice reward associated with the blue rectangle was reset to its full amount,

0.30 mL. Second, the height of the gray bar was selected randomly from the distribution of 0.5 – 10.5 s. Third, the locations of the

targets were switched. To avoid changes in behavior due to satiety, each session was limited to one hour.

Behavioral data were analyzed with three foraging models using custom software in MATLAB. The three foraging models were

constructed on the basis of the best-fit distribution for cumulative reward intake. The foraging threshold was computed from the

mean of the exponential gain function for foraging in a patch, which reflected the reward encounter rate. This exponential gain func-

tion was computed from the experiment-defined sequence of rewards and the experiment-defined trial event times (inter-trial inter-

val = 1 s; handling time = 0.4 s; target acquisition fixation time = 0.25 ms; mean fixation time = 0.6 s; and time for reward delivery for

each trial in patch) and empirically measured response timemeans, which varied daily. We thenmodeled the reward gain function g(t)

over all reward harvesting choices in a patch as an exponential survival curve

gðtÞ= 1� e�l0T

for fit reward encounter rate l0 and cumulative time in patch T using maximum likelihood estimation. In order to fit this exponential, all

rewards were normalized by the maximum possible net reward.

Like other value-based decisions (Busemeyer and Townsend, 1993; Krajbich and Rangel, 2011), foraging decisions can be

modeled as the integration of a decision variable to a threshold (Kacelnik et al., 2011; Calhoun and Hayden, 2015). In our task, we

considered two different approaches to model the decision threshold, one based on foraging theory (Stephens and Krebs, 1986)

and the other based on survival analysis (Fox, 2001) using the mean of the maximum entropy distribution for encountered rewards,

the exponential gain function.

First we developed a foraging theory model inspired by the marginal value theorem (MVT; Charnov, 1976). We computed the

average reward rate from the Gamma-distributed patch residence times and exponential gain function (Stephens and Krebs, 1986):

Rðbt Þ= lgðbt Þ
1+ lbt

for average reward rate RðbtÞ, patch encounter rate l, estimated patch residence time bt, and reward gain function gðbtÞ. Rate-maxi-

mizing patch residence times bt were found using maximum likelihood estimation and the fmincon function in MATLAB. TheMVT pre-

dicts that advanced knowledge of a longer travel time to the next patch will increase the time spent foraging in the current patch,

whereas knowledge of a shorter travel time will decrease foraging time (Stephens and Krebs, 1986; Houston and McNamara,

1999), aswe confirm in Figure 1.We incorporated this influence of travel time by computing the threshold for each ith patch separately

as though drawn from a set of patcheswithmean travel time ti = (1/l) (Stephens and Krebs, 1986). The decision variable for thismodel

was the difference between net received reward and the MVT-computed optimal foraging threshold. For the optimal foraging model,

the decision variable DV was equal to the reward rate computed from the rate maximizing foraging time bt minus the current within

patch reward rate

DV =Rðbt Þ � RðtÞ
for optimal reward rate RðbtÞ and actual current reward rate R(t).

Second, we developed a net foraging model based on the cyclical nature of patch-based foraging and the mean net reward har-

vested from a patch. Patch foraging is characterized by a renewal cycle (Houston and McNamara, 1999): the animal makes an iter-

ated series of decisions (begin foraging in patch – stay in patch – stay in patch – stay in patch – leave patch – begin foraging in patch

etc.). Each such cycle can be modeled as lasting a certain amount of time. These patch residence times are modeled as a survival

process (Fox, 2001) using the net reward harvested so far in a patch, computed with the exponential gain function above (Houston

and McNamara, 1999). A leave threshold was calculated from the mean of the exponential gain function g(t) for rewards harvested

from a patch. To capture the influence of travel time on time in patch, this threshold was modulated by an additive gain term

computed from the Z scored travel time for each patch. For the net foraging model, the decision variable DV on trial twas the reward

differential, defined as the difference between net received reward and threshold net reward for leaving

DVt =

 Xt�1

i = 1

Ri

!
� Tj

for trials in patch 1 through t – 1, rewards R, and threshold T for patch with travel time j.
Neuron 96, 339–347.e1–e5, October 11, 2017 e2



Third, we developed a salience foragingmodel also based on themean net reward harvested in a patch but that included a salience

term. Salience plays a key role in attentional learning models (Esber and Haselgrove, 2011). In these models, the associability of a

conditioned stimulus (CS) is the degree to which the CS can be associated with an unconditioned stimulus (US) (Mackintosh,

1975; Pearce and Hall, 1980; Esber and Haselgrove, 2011). This associability can be defined in terms of its salience, the absolute

value of the difference on the previous trial of the intensity of the US and the CS predicted strength (Mackintosh, 1975; Pearce

and Hall, 1980). A similar sort of rule can be adopted for decision-making. The value of the current offer can be compared to a stan-

dard, and the absolute value of the difference of the offer value from the standard represents the salience of the offer (Heilbronner

et al., 2011).

The salience model computes the same decision variable as the net foraging model, but then multiplicatively scales this decision

variable based on salience. Salience was defined as the absolute value of the difference between net received reward and the mean

net reward computed from the exponential distribution. Salience was multiplied by the value of the net offered reward minus the de-

cision threshold and weighted by a coefficient fit to the choice data (MLE). The decision variable DV for this model was the reward

differential times the weighted salience

DVt = bs

�����
 Xt�1

i = 1

Ri

!
� Tj

�����
  Xt�1

i =1

Ri

!
� Tj

!

for salience coefficient bs and other variables as above. Despite containing more parameters, the salience foraging model was the

best fit model even after correcting for the number of parameters (as reported in the results).

In Figures 1C and 3C, we computed the probability of choosing to leave a patch for these foragingmodels using a sigmoidal choice

function with a single decision variable. The observed choice behavior was fit with the net foraging model, optimal foraging model,

and the salience foraging model using the respective decision variables. For all three models, a standard sigmoidal choice function

was used to calculate the probability of choosing the leave option:

pL =
eDV=s

1+ eDV=s

for the probability of choosing the leave option pL, value differenceDV as defined for eachmodel above, and constants fit usingMLE.

Both s and bs were simultaneously fit using MLE for the salience foraging model.

Traveling Salesman Task Behavioral Modeling
In our traveling salesman task, monkeys foraged through a visual array of six targets by sequentially aligning gaze with them (Fig-

ure 3A). On every trial, one of six targets delivered a large reward (�0.2 mL), one delivered a small reward half the size of the large

one (�0.1 mL), and the remaining four delivered no rewards. After aligning gaze (±0.5�) with a fixation cross for 500 – 1000 ms, the

target array was presented. Monkeys selected a target by directing their gaze on to it and holding fixation for 250ms (±0.5� from edge

of target; targets were 60 pixels in width). While the locations of the targets were always the same, the identities of the rewarded tar-

gets varied pseudo-randomly from trial to trial. Monkeys were free to choose the targets in any order, but they had to select every

target before being allowed to advance to the next trial, mimicking traplining problems in natural foraging. After completing the array,

a 1000 ms inter-trial interval was imposed, and then a new fixation cross appeared on the screen.

Our model-based analysis of behavior in the traveling salesman task computed cumulative rewards and reward rates. Cumulative

rewards were equal to the total reward harvested during a trial, and cumulative reward rates divided that net reward by the cumulative

elapsed time between choices. The total reward harvested at choice n within a trial was the sum of the rewards received from the

previous choices 1:n-1 in that trial. The elapsed time at choice nwas the sumof the choice fixation times (250ms) for previous choices

1:n-1 and the variable response times of the monkey for all choices 1:n. Response times were calculated from the end of saccade for

the last decision to end of saccade for the current decision.

For each day’s run, we determined the daily dominant pattern by assessing the similarity between every possible pair of trials on a

given day by computing the pair’s Hamming score (Hamming, 1950). To compute the similarity between two trials, each trial’s pattern

of choices by target number was first coded as a digit string (e.g., 1, 2, 4, 5, 6, 3). TheHamming distanceDi,i0 between two strings i, i0 of
equal length is equal to the sum of the number of differences d between each entry in the string,

Di;i0 =
X
n

dðxn; ynÞ

for strings x, y of length n. We computed Di,i’ for every pair of trials, and then, for each unique pattern of choices, computed the

average Hamming distance Di;i0 . Larger Di,i’ correspond to strings with more differences. The daily dominant pattern corresponded

to the pattern with the minimum Di;i0 .

We analyzed the choicesmade in the traveling salesman task as decisions to continue on the trapline, as defined by the daily domi-

nant pattern, or to diverge from it. Wemade two adjustments to accommodate this analysis. First, we excluded trials where the mon-

keys diverged at the very beginning of foraging, that is, trials where the first choice diverged from the DDP, because this behavior was

not influenced by the reward harvested over the course of the trial. Second, we fit 30 different exponential gain functions, one for each
e3 Neuron 96, 339–347.e1–e5, October 11, 2017



possible sequence of experienced rewards during a trial (not counting zeros as unique). To compute the different foraging thresholds

for each choice in a trial, we used the mean lambda from the set of gain functions that were consistent with the sequence of rewards

the monkey had experienced leading up to that choice number in the trial. We fit the same set of models from the patch-leaving task

analysis to the behavioral data from the traveling salesman task, and models were compared using the same method as well.

QUANTIFICATION AND STATISTICAL ANALYSIS

The outcomes of statistical tests are detailed in the Results, and included the use of Student’s t test, linear regression, ANCOVA to

compare ramp-ups during the patch leaving task, and a generalized linearmodel (GLM). Significance was set at a = 0.05, andmultiple

comparisons were always Bonferroni corrected. Results reported are mean ± standard error of the mean. For individual cell results, n

was set to the number of patches (patch leaving tasks) or number of diverge and non-diverge trials (traveling salesman task). For

population results, n was the number of recorded cells.

Behavioral models were compared using log-likelihoods. All zero probabilities were rectified to very small probabilities (1x10�15).

We then took the sum of the logs of these probabilities for model comparison. Models were compared using the Akaike Information

Criterion (AIC) (Akaike, 1974), a measure of goodness-of-fit that penalizes models possessing more parameters. AIC is defined as

AIC= � 2LL+ 2k

for the log-likelihood of the data given the model, LL, and the number of free parameters in the model, k.

Neuronal firing rates often show non-linearities (Dayan and Abbott, 2001), which can be captured using a GLM (Aljadeff et al.,

2016). All regressions on neuronal firing rates were performed using a GLM with a log-linear link function, Poisson distributed noise,

and dispersion estimated from the data, and all reported results utilized Bonferroni corrected p values. The use of this GLMeffectively

models neuronal responses as an exponential function of a linear combination of the input variables. GLMs were run using the glmfit

function in MATLAB.

Patch Leaving Task Neural Analysis
Analysis of neural recordings focused on thewhole trial epoch, a two-second-widewindow ranging fromone second before choice to

one second after, and a patch exit epoch, from 15 s before the acquisition of the leave target to that acquisition time. Peri-stimulus

time histograms (PSTHs) were computed to depict neuronal activity at the patch-level, corresponding to analyses time-locked to

patch exits. For these patch-level PSTHs, data were aggregated into 50 ms bins and convolved with a Gaussian of mean 0 and stan-

dard deviation 125 ms.

Neuronal firing rates were also modeled during the patch exit window, the last 15 s in a patch. The activity of each cell for each

patch was retained, and the firing rates were treated as a time series of binned spike counts in 50 ms bins. We first regressed the

mean firing rate in each bin against time before patch exit. Next, we ran the same regression for each patch separately, regressing

the binned firing rates against time.We then correlated those regression slopes with the Z scored reward rates from the leave trials. A

similar regression was performed for the population after normalizing the activity of each cell by subtracting the mean activity and

then dividing by that mean. To investigate the dynamics of neuronal activity around the time of patch exit, these spike counts

were regressed against reward rate, time before exiting the patch, salience, and all 2-way and the 3-way interactions. Due to vari-

ability in the timing of task events and response times (both fixation acquisition and choice), all three covariates were decorrelated

(time X reward rate: mean R2 = 0.14 ± 0.0079; time X salience: mean R2 = 0.14 ± 0.011; reward rate X salience: mean

R2 = 0.30 ± 0.013).

To compare neural coding of salience in rich and poor foraging environments, whole trial epoch spike counts for those trials in the

patch exit window were regressed against salience. Patches were first sorted into poor (reward rate Z score < 0) and rich

(Z score R 0) ones, and spike counts regressed separately for each. Patch reward rates were computed by summing the reward

received in a patch and divided by the elapsed time in patch, though choosing an instantaneous reward rate, equal to themost recent

reward before the current choice divided by the elapsed time since that reward, yielded similar findings.

Traveling Salesman Task Neural Analysis
We analyzed neuronal firing rates during the traveling salesman task for two different epochs: first, a 1000 ms epoch in 50 ms bins

preceding either diverge or non-diverge decisions, to compare the two types of decision; second, a time series of spike counts in

50 ms bins from the start of a trial up to the choice to diverge. For PSTHs, data were binned in 50 ms bins and convolved with a

Gaussian of mean 0 and standard deviation of 75 ms.

Divergent and non-divergent choices were analyzed as follows. Only choices corresponding to the first divergent choice in a trial

were counted as divergent. Furthermore, because we were interested in exploring the processes that resulted in diverging from a

trapline while the trapline was being executed, divergent choices that occurred on the first choice in a trial were excluded. Such trials

begin with a divergence before reward rates or other returns were possible during a trial and hence cannot reflect the influence of

those variables. Non-divergent choice neural activity was drawn from the fifth choice on trials that matched the daily dominant

pattern. The fifth choice corresponds to the point in the trial where there are two targets left, as well as to the last point in the trial

at which the monkey could still diverge.
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To compare diverge decisions to non-diverge decisions, the mean firing rate in a 1 s epoch on every non-excluded trial preceding

the decision was analyzed. The two groups were compared using a Student’s t test. We then split the diverge group into poor (reward

rate Z score < 0) and rich (reward rate Z score R 0) environments, and compared the firing rates during choices of each type to the

firing rate on non-diverge choices. To assess neural coding of diverge decisions across reward rates, we linearly regressed themean

firing rate on diverge trials during this 1 s epoch against Z scored reward rate. A similar regression was performed for the population

after normalizing the activity of each cell by subtracting the mean activity and then dividing by that mean.

A GLM was used to determine the influence of salience on decisions to diverge. All the spikes from the onset of the trial up to the

decision to diverge were sorted into 50 ms bins and then regressed against reward rate, time before divergence, salience, and all

2-way and the 3-way interactions. As with the patch leaving task, time, reward rate, and salience were decorrelated (time X reward

rate: R2 = 0.063 ± 0.0048; time X salience: R2 = 0.020 ± 0.0057; reward rate X salience: R2 = 0.15 ± 0.0050). Computed coefficients

from this regression for salience and for the interaction of reward rate and time were subsequently regressed against each other. 9

neurons for which fewer than 5% of trials were diverge trials (all from monkey L) were excluded from this analysis.

To examine differences in the strength of salience signaling for diverge trials in high and low reward rate contexts, spike counts

from the whole choice epoch, from 250ms before the end of a choice saccade to 500ms after (covering a 250ms hold fixation period

to register a choice and a 250 ms post-choice period), were regressed against salience. Diverge trials were sorted into poor (reward

rate Z score < 0) and rich (reward rate Z scoreR 0) environments, and spike counts regressed separately for each. The reward rate

was calculated by summing the rewards over the whole trial and dividing by the elapsed trial time, though choosing an instantaneous

reward rate, equal to the most recent reward divided by the elapsed time from receipt of that reward to the current choice, yielded

similar findings. Two cells were excluded from this analysis because there were too few spikes on diverge choices yielding coeffi-

cients in excess of 100, both from monkey L.
e5 Neuron 96, 339–347.e1–e5, October 11, 2017



Neuron, Volume 96
Supplemental Information
Posterior Cingulate Neurons Dynamically

Signal Decisions to Disengage during Foraging

David L. Barack, Steve W.C. Chang, and Michael L. Platt



Supplemental Information 1	

 2	
Figure S1. Related to Figure 2. Individual monkey results showing ramping activity prior to 3	

patch leaving in poor (z-scored reward rate < 0; blue traces) but not in rich (z-scored reward rate 4	

≥ 0; red traces) patches. A. Monkey L, 96 neurons, 16 (17%) of 96 cells significant (patch-by-5	

patch vs. z-scored reward rate linear regression, p < 0.05). Slope for poor environments was 6	

significant (linear regression, p < 1x10-6) but not for rich (p > 0.48), and was significantly steeper 7	

than rich (ANCOVA, p < 0.005, F(1,596) = 10.5810). B. Monkey R, 63 neurons, 4 (6%) of 63 8	



 2 

cells significant. Slope for poor patches was significant (p < 0.05) but not for rich (p > 0.9), 1	

though there was not a significant difference between the two slopes (p > 0.1, F(1,596) = 2	

2.6541). 3	

 4	
Figure S2. Related to Figure 4. A. Population plot for diverge (purple trace) and non-diverge 5	

(orange trace) trials for Monkey L. 43 (51%) of 84 neurons signaled diverge choices, and 40 6	

(48%) of 84 neurons predicted divergences one choice in advance, with 33 (39%) of 84 neurons 7	

signaling both for Monkey L. 39 (46%) of 84 cells predicted diverge choices in the 1 s preceding 8	

a decision to diverge from the trapline. B. Population plot for diverge (purple trace) and non-9	

diverge (orange trace) trials for Monkey R. 16 (40%) of 40 neurons signaled diverge choices, 10	

and 14 (35%) of 40 neurons predicted divergences one choice in advanced, with 11 (28%) of 40 11	

neurons signaling both for Monkey R. 20 (50%) of 40 cells predicted diverge choices in the 1 s 12	

before a divergence. C. Population plot for rich and poor environments on diverge trials only for 13	

Monkey L. The activity of 14 (17%) of 84 cells correlated with reward rate. Rich contexts (red 14	



 3 

trace): reward rate z-score > 0; poor contexts (blue trace): reward rate z-score ≤ 0. D. Population 1	

plot for rich and poor environments on diverge trials only for Monkey R. The activity of 5 (13%) 2	

of 40 cells correlated with reward rate. 3	

 4	
Figure S3. Related to Figures 2 and 4. Dynamic signaling of salience preceding the decision to 5	

disengage. A. Heatmap of regression coefficients from sliding boxcar analysis (3 s wide boxcar, 6	

50 ms steps) starting 15 s before patch leave during patch leaving task. For display purposes, 7	

coefficients were thresholded at ±10. A sinusoidal pattern in the strengths of the coefficients, 8	

roughly matching on-trial and off-trial (i.e., start of intertrial interval) times, can be seen for 9	

positively coding (bottom of heatmap) and negatively coding (top) cells. B. Heatmap of 10	

regression coefficients from sliding boxcar analysis (200 ms wide boxcar, 50 ms steps) starting 1 11	

s before diverging during traveling salesman task. For display purposes, coefficients were 12	

thresholded at ±10. The sinusoidal pattern observed in PCC neurons prior to leaving a patch 13	

(Figure S1A) is weakly evident at best. 14	
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