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1. Introduction
The neuropeptide oxytocin persists as a hot topic in neuroscience, with steadily
increasing interest in both scientific literature [1] and popular culture during
recent decades [2–5]. This attention is inspired not only by the fascinating work-
ings of oxytocin itself, which span in breadth from underlying critical
reproductive biology [6] to supporting high-level social behaviours [7–9], but
also by the enormous potential of leveraging oxytocin as a therapeutic to enhance
social cognition [10–13]. However, accompanying this excitement are well-
justified critiques. These include the following: (i) our understanding of how
oxytocin modulates social cognition is lacking in methodological rigour
[14–17]; (ii) the effects of oxytocin treatment can be highly context-dependent
[18,19]; (iii) we are still building a mechanistic understanding for how oxytocin
impacts social behaviours at the neurobiological level [9,20–24]; (iv) developmen-
tal and life experience can drastically change the function of oxytocinergic
systems [25–27]; and (v) we lack a single overarching theory to predict how oxy-
tocin may modulate behaviour [28–31]. These critical examinations are
fundamental for advancing our understanding of oxytocin, enabling the utiliz-
ation of oxytocinergic mechanisms as a means to study the neurobiology of
social behaviours [32,33] and as a curative tool to restore the deficits in social cog-
nition observed across a variety of psychiatric disorders [34,35].

One critical perspective that has been lacking in the literature until recently
is the examination of how oxytocin interacts with other neuromodulatory sys-
tems [36]. In the brain, no single region or neuromodulator is an island,
entire of itself, and although the practical considerations of laboratory exper-
iments present limits on what any single experiment can address, studying
the manipulations of oxytocin in isolation may lead to an incomplete or incor-
rect understanding. Historical experiments [6,37–42] have laid the crucial and
foundational bases for researchers today to move forward with the difficult,
but necessary, tasks of examining the substrates and effects of oxytocin in
increasingly naturalistic behavioural contexts [7,32,43–45] and from holistic per-
spectives [44]. Present incongruities in our understanding of oxytocin may be,
in part, the result of experimental approaches that seek to isolate the oxytocin
system as an experimental variable while ignoring the rest of the brain or
body. This is not intended as a criticism of past experiments, which built our
understanding of oxytocin from a uterine-contracting agent to our multi-faceted
perspective today, but instead a proposition for future studies that seek to
address as yet unanswered questions.

Indeed, the field is already successfully moving in the direction of examin-
ing oxytocin function under more naturalistic contexts and more holistically,
aided by advancements in technology [46,47] and decades of critical introspec-
tion in the literature [14,15,17,48]. For example, recent research has identified
supralinear enhancements of social gaze from combinatorial treatment of oxy-
tocin and the opioid antagonist naloxone [49], demonstrating a mechanistic link
between the oxytocinergic and opioidergic systems in the regulation of social
attention. Moreover, in the mouse nucleus accumbens, the endogenous endo-
cannabinoid anandamide binding at the CB1 receptors drives social reward,
and blockade or selective activation of oxytocin neurons in the paraventricular
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nucleus of the hypothalamus can suppress or enhance this
socially driven anandamide mobilization [50], connecting
the endocannabinoid system with oxytocin. Likewise, the
genetic deletion of presynaptic oxytocin receptors from the
nucleus accumbens, removing the relevant serotonergic
innervation to the nucleus accumbens, eliminates the reward-
ing aspects of social interaction in mice [51], suggesting a role
for serotonin–oxytocin interactions in social behaviours.
These and other mechanistic connections between oxytocin
and other neuromodulators are beginning to demonstrate
that many of the functions attributed to oxytocin are
mediated through complex and sometimes powerful cross-
talk between oxytocin and other neuromodulators. This
exciting perspective will be crucial for future research exam-
ining not only oxytocin but also the neurobiology of social
behaviour as a whole. Thus, the goal of this introduction,
and this entire theme issue more broadly, is to highlight
some of the known interactions between oxytocin and other
neuromodulators and to provide a holistic perspective of oxy-
tocin function for future studies.
77:20210047
2. Oxytocin and sex hormones
Oxytocin, and the closely related arginine-vasopressin, are
the result of ancient gene duplication in vertebral evolution
[52–55]. While contemporary neuroscience and psychology
may emphasize the neuromodulatory role of oxytocin, the
hormonal functions of oxytocin in reproductive behaviours
[56], parturition [57], lactation [6] and early parent–infant
interactions are undoubtedly the more primal functions for
this complex non-apeptide. Given the role that oxytocin
plays in reproductive biology, it is unsurprising that previous
studies have linked oxytocin with other sex hormones in
shaping behaviours. Intranasal administration of oxytocin,
for example, will also increase blood plasma levels of testos-
terone in healthy men [58]. In males, intranasal oxytocin has
been shown to blunt the correlation between testosterone
reactivity and competitiveness [59]. Oxytocin administration
can also modulate testosterone levels in fathers in a fashion
that is correlated with father–child social behaviours such
as social gaze and social touch [60].

In this theme issue, Bakermans-Kranenburg et al. [61] asks
how hormonal levels fluctuate in men from pregnancy to
after the birth of their firstborn child, and how oxytocin
and other hormones could explain differences in the quality
of their parenting. Both oxytocin and oestradiol remained
stable from the pre- to post-natal periods, while vasopressin
and testosterone declined. Interestingly, oxytocin by itself,
or in relation to other hormones, was not related to paternal
sensitivity. However, for fathers with high oestradiol, a
higher level of testosterone was associated with lower sensi-
tivity. Adding to this understanding, Jiang et al. [62]
examined how both oxytocin and testosterone modulated
the gaze of non-human primates when shown conspecific
social and sexual images. Both oxytocin and testosterone
increased the innate bias for gaze on female genitalia over
female faces and promoted viewing of the forehead region
where rhesus monkeys (Macaca mulatta) display sexual skin.
This modulation of stimulus preference indicates that both
oxytocin and testosterone influence reproductive behaviours
by possibly increasing the visual salience of sexual features.
Similarly, Paletta et al. [63] review how interactions between
oxytocin and other regulatory systems mediate social beha-
viours, with a particular emphasis on the female sex
hormone oestrogen, importantly highlighting a link between
oxytocin and the oestrogen receptors in shaping behaviour.
3. Oxytocin interactions with dopaminergic,
serotonergic and opioidergic systems

Interactions between oxytocin and other neuromodulator or
neurotransmitter systems remain broadly underappreciated
in the literature. However, links between oxytocin and the
dopaminergic system are arguably the most well understood
[64]. The classic prairie vole (Microtus ochrogaster) model of
pair-bonding has been demonstrated to be mediated not just
by oxytocin receptors in the nucleus accumbens [37–39,41],
but also by mesolimbic dopamine circuits in the reward
centres of the brain to create a conditioned partner preference
[39,65]. Exploring this relationship between oxytocin binding
and dopaminergic circuits, Frehner et al. [66] in this issue
examined a dense clustering of oxytocin receptors in the
human dopaminergic substantia nigra pars compacta to test
if variations in oxytocin receptor expression could identify
individuals with autism. Postmortem human brain tissue
specimens revealed that females with autism had significantly
lower levels of oxytocin receptor expression than did males
with autism or typically developing males and females. In
situ hybridization to visualize and quantify oxytocin receptor
mRNA found no differences between groups, suggesting
that the difference in receptor expression was possibly the
result of local dysregulation in oxytocin receptor protein
translation or changes in the endocytosis and recycling rates.

The nucleus accumbens is a key site of oxytocin–
dopamine interactions, as detailed thoughtfully in a review
by Borie and colleagues [67] that explores how endocannabi-
noids, by interacting with oxytocin, modulate experience-
dependent social behaviours. Here, the authors examine
how oxytocin modulates glutamatergic signalling through
the recruitment of endocannabinoids in the prairie vole
nucleus accumbens and broadly review our understanding
of the effects of oxytocin–endocannabinoid interactions on
social behaviour, with an emphasis on how sex differences
and life experiences may modulate these processes.

Examining the relationship that oxytocin has with the
dopamine and serotonin systems in maternal behaviours,
Grieb & Lonstein [68] in this issue shed light on how these pro-
cesses regulate different aspects of caregiving and postpartum
behaviours. Although oxytocin–dopamine interactions have
been understood to motivate active caregiving behaviours,
such as retrieval of pups, the authors highlight the underap-
preciated interactions between oxytocin and serotonin. These
oxytocin–serotonin interactions, they argue, regulate many of
the remaining dimensions of maternal care including nursing,
anxiety-like behaviours and strategies for coping with stress.

Beyond the classical neurotransmitters, oxytocin also
interacts with other neuromodulatory systems. One notable
example is interactions between oxytocin and the opioid
receptor system, observed both in vitro [69–73] and in social
behavioural experiments [49]. Putnam & Chang [74] detail
interactions between the oxytocinergic and opioidergic sys-
tems in shaping social behaviours, postulating a model to
explain the supralinear effects arising from co-administering
oxytocin and opioid blockade on social attention.
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4. Interventional oxytocin
The promise of using oxytocin as a therapeutic intervention
remains a tantalizing goal for the field of social neuroscience
[12,75]. However, a robustly effective approach has not yet
been identified [48,76,77]. The paper by Wei et al. [78] in this
issue tackles this problem by suggesting a combinatorial
approach to treat neuropsychiatric social impairment using
both the oxytocin and endocannabinoid systems. Here, the
authors detail the neurobiology of both the oxytocin and
the endocannabinoid systems and explain how a multi-targeted
treatment strategy may be best suited to modulate the multiple
signalling processes underlying social cognition.

In an intervention-focused research article, Daughters et al.
[79] compare the efficacy of oxytocin treatment against a vali-
dated emotion training program to test improvements in
emotion recognition. Interestingly, they show that psychologi-
cal intervention, but not intranasal oxytocin, was able to
improve recognition specifically for angry expressions. This
interesting finding highlights that behavioural or psychological
treatments, with fewer caveats and risks, could sometimes
exceed pharmacological interventions and should be
considered carefully for future clinical trials involving oxytocin.
 0047
5. Oxytocin interactions beyond the neuron
A holistic understanding of oxytocin extends beyond specific
neurotransmitters or brain regions but encompasses underap-
preciated aspects of neurobiology. A prime example of this is
reviewed by Gonzalez and Hammock [80], who examine
how oxytocin interacts with the microglia. Here, the authors
detail how microglia have a bidirectional regulatory relation-
ship with the oxytocin system and how these processes
enhance experience-dependent circuits during sensitive
periods to shape social behaviours. This perspective not
only emphasizes the important and undervalued role that
microglia play in shaping neural activity [81], but also how
microglia–oxytocin interactions may critically impact our
understanding of endogenous oxytocin function [82].

Similarly, a review piece by Carter & Kingsbury [83]
offers a novel perspective with respect to how the oxytocin
system played an important evolutionary role in managing
oxidative stress and inflammation from the earth’s oxygen-
rich conditions. The resultant unique properties of the oxyto-
cin system may have significantly enabled vertebrates to
manage the consequences of oxygen-linked processes, such
as inflammation or free radicals, while still supporting
complex social behaviours.

At the neurobiological level, ageing also drastically
impacts cognitive capacities. However, the link with neuro-
peptides is understudied. Polk and colleagues [84] examine
the link between oxytocin and social cognition in ageing,
finding that higher levels of plasma oxytocin were associated
with lower accuracy in emotion identification, while plasma
levels of arginine-vasopressin had no relation to emotion
identification accuracy. These novel findings support the
involvement of oxytocin in age-related neural processes and
the possible interactions between oxytocin and basic
cognitive capacities.

Oxytocin interactions also encompass broad life events, as
expounded by Bales and Rodgers [85] in a review examining
oxytocin interactions in partner loss. The authors survey
what is known about the neuroendocrine mechanisms that
regulate the emotional consequences of partner loss and
specifically focus on interactions among oxytocin,
corticotropin-releasing-hormone and the κ-opioid system.
6. Conclusion
The final paper of our theme issue by Leng et al. [86] takes a
critical perspective on whether oxytocin is indeed a ‘social’
neuropeptide. This is a fitting final note to this Introduction
since our perspective on oxytocin must constantly be reeval-
uated and challenged. Without disputing the significance of
previous findings, we suggest that future studies should
seek to examine the function of oxytocin not in isolation,
but instead from a holistic perspective. The interactions
between oxytocin and other neuromodulatory systems in
the brain and body are not only crucial to understanding oxy-
tocinergic function, but also the fundamental neural
substrates of social behaviour. Understanding these connec-
tions will enable scientists and clinicians to better realize
therapeutic interventions targeting the oxytocinergic system
and will provide a window into the evolved process that
shaped social functions in a wide array of animal species.
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