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Social learning through prediction error in the brain
Jessica Joiner1, Matthew Piva2,3, Courtney Turrin1 and Steve W. C. Chang 1,2,3

Learning about the world is critical to survival and success. In social animals, learning about others is a necessary component of
navigating the social world, ultimately contributing to increasing evolutionary fitness. How humans and nonhuman animals
represent the internal states and experiences of others has long been a subject of intense interest in the developmental psychology
tradition, and, more recently, in studies of learning and decision making involving self and other. In this review, we explore how
psychology conceptualizes the process of representing others, and how neuroscience has uncovered correlates of reinforcement
learning signals to explore the neural mechanisms underlying social learning from the perspective of representing reward-related
information about self and other. In particular, we discuss self-referenced and other-referenced types of reward prediction errors
across multiple brain structures that effectively allow reinforcement learning algorithms to mediate social learning. Prediction-
based computational principles in the brain may be strikingly conserved between self-referenced and other-referenced
information.
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HISTORICAL PERSPECTIVES ON REPRESENTING OTHER
Learning about the world and making adaptive decisions is a
critical feature of cognition. This important link allows human and
nonhuman animals to manipulate their environment and survive.
Decision-making takes on more complex dynamics when an
animal is not solitary, but lives in a community with other
members of its own species. We know much about how human
and nonhuman animals learn from their own actions and
outcomes, and where such self-referenced information is repre-
sented in the brain. However, much less is known about the
computations underlying how we learn about others. In this
review, we examine the presence of other-referenced prediction
errors in the brain that represent other’s actions and reward
outcomes.
One of the first academic disciplines to attempt to understand

how we develop a concept of others is developmental psychol-
ogy, in which researchers often explore how babies come to
understand the world.1, 2 One viewpoint, that of theory–theory, is
that, like small scientists testing causal relations,3 children are
constantly gathering data from the world and testing the
predictions they make using the collected data. Other people
could be regarded as stimuli to be learned about based on
observation and direct and vicarious experience.
In contrast, simulation theory assumes that we develop our

understanding of others through self-referencing, in which we use
the machinery that we use for our own mental processes, and
project that knowledge onto other’s behaviors.4 Later, this notion
of simulating others became associated with the “mirroring”
neuronal activity observed in individual cortical motor neurons
when macaque monkeys observe an action and perform the same
action.5

Notably, these theories have different predictions about how
other-referenced information is represented in the brain.6 In a
simulationist account, the notion of “other” is derived from one’s

sense of the self, that is, egocentrically. Ideas about others would
originate from and rely on the self-referenced, egocentric
mechanisms. However, in theory–theory, information about others
would be processed and evaluated like any other information
from the environment, perhaps engaging allocentric systems.
Historically, these two ideas capture a central question about how
others are represented in the brain.

OBSERVATIONAL AND SOCIAL LEARNING
Both human and nonhuman animals rely on observation to
navigate the world. Rats,7 birds,8 and chimpanzees9 observe
others to learn about their behaviors in a given environmental or
social context. One of the earliest forms of observational learning
occurs in imitation. Imitative learning typically involves a young
organism copying the motor behaviors of a social exemplar. Infant
humans10 and infant monkeys11 imitate gross facial expressions
made by a caregiver early on in development, sticking out their
tongue reflexively when an adult human demonstrates, likely an
example of a simple motor response prepared by the brain for
social development. Imitation in human children is most famously
exemplified in observational learning or, more broadly, social
learning studies.12

Social learning occurs when the learner watches another agent
act. Notably, without any practice or direct primary reinforcement,
the learner can perform the previously observed behavior. This
suggests that the learner is able to acquire new knowledge or
skills from watching other’s experienced outcomes, possibly
through vicarious reinforcement.13 The efficacy of social learning
depends on several social variables. For example, similarity
between the observer and the observed increases the efficacy
of learning.14 Furthermore, there is a close link between empathy
and social learning. Empathy is sensitive to learned information
about the traits of the other person, such as how fair they are15 or
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whether or not the other person is considered in-group or out-
group relative to the observer.16 In addition, social status directly
affects learning based on others in primates, in which high-status
individuals are more likely to be imitated.17

In humans, observational learning may be at the core of
establishing social and cultural norms.12 In Bandura’s classic
study13 on behavioral modeling, children that saw an adult model
aggressive behavior toward a large doll later performed the same
aggressive behaviors when given the opportunity to interact with
the same doll. Observational learning has an important role in
development as well as in later social interactions and social
cognition. A critical question in social learning is how self and
other are represented across the brain structures involved in
learning and whether the learning-related signals referenced to
self and other are engaging similar or distinct neural
computations.
Social learning as we define it in this review focuses on this

observation-based learning, in which a subject learns about
another through observing their actions as well as their reward
outcomes. However, the aspects of social learning are as multi-
tudinous as the facets of a social interaction itself. One could learn
about different aspects of the other, such as their personality or
their mental state. Social learning could also reflect learning from
others about one’s own reward outcomes (e.g., a teacher
providing feedback on a student’s essay and grade).

HIGHER-LEVEL SOCIAL COGNITION
Learning about others allows us to model the internal states of
other entities. The ability to model another’s beliefs is called
Theory of Mind (ToM). ToM is arguably the most complex form of
understanding other individuals, heavily engaging other-
referenced processing. The fact that human babies can model
the beliefs of others speaks to how complex and rich their
representation of the world is from the beginning. Not surpris-
ingly, understanding the mechanisms behind ToM has long been
of great interest, with competing ideas about whether or not ToM
represents a separate social process or the convergence of many
generalized processes.18 ToM is often measured using a false
belief task,19 which tests if a participant can understand whether a
social model has an incorrect belief about an object’s location.
Notably, very young children, even as young as 11-month-old
infants, are capable of modeling the internal beliefs of others and
“pass” a false belief test,20 indicating that other-referenced
processing in the brain emerges very early in the human
ontogeny.
Studying ToM in nonhuman animals, however, has led to more

mixed results. For example, monkeys fail the same false belief
tasks infants can pass.21 Nevertheless, nonhuman primates have
been shown to engage in other forms of understanding or at least
representing others. Monkeys display joint attention via gaze
following.22–24 Monkeys will typically follow the gaze of another
entity toward an object or direction, indicating either that they
can understand something about the perspective of the other
entity or that other’s gaze is reflexively allocating one’s attention
through hard-wired neural mechanisms evolved to deal with the
association between other’s gaze angle and something of interest
and value. Similarly, monkeys25 and chimpanzees26 have been
shown to comprehend what visual information is available to a
separate agent—for example, when given an opportunity to steal
food, they prefer to do so from someone who does not have visual
access to them at the moment of theft. This indicates that
primates understand other entities have a different perspective,
even if they do not necessarily model the beliefs of the other
entity.
Taken together, both humans and nonhuman animals are

capable of complex social cognition, but the level of sophistication
is what might differentiate them in the evolutionary history.

Understanding the computations of other-referenced information
and representations of self and other will further inform how the
brain was evolved to enrich what is often referred to as higher-
level social cognition.

REINFORCEMENT LEARNING FRAMEWORK
Reinforcement learning (RL) is perhaps the most influential
framework developed to describe how an agent learns by
interacting with its environment. RL is derived from the
behaviorist view of animal behavior, in which an organism’s
knowledge of the world is exclusively modeled based on its
behavior. Crucially, RL theories focus on mechanistic accounts for
behaviors based on several learning-related parameters estab-
lished from empirical sources.
Both humans and nonhuman animals are excellent models for a

variety of learning and decision-making tasks that are grounded
on RL theories. Describing learning and learned outcomes through
mathematical models is a powerful way to make explicit and
testable predictions about how an organism will behave in a
particular context and how they will make decisions that take into
account internal states, such as motivation and subjective value.27

The RL framework can capture seemingly complex behaviors with
relatively simple yet elegant rules, as in the famous
Rescorla–Wagner model.28 Although various RL models differ in
how they describe different cognitive phenomena, they share
several core elements, such as the rate of learning or the salience
of stimuli, to fit the specifics of learning and decision-making
processes.
RL has its roots and applications in both engineering and

psychology. RL has its core foundations in the work of Richard
Bellman, most famous for developing the Bellman optimality
equation and dynamic programming. The more widely appre-
ciated root of RL is conceptualizing how organisms gather
information from their environment to learn and make decisions.
RL requires an agent that moves through different states, or
contexts, in a given environment. Other necessary components
include a reward signal, a value function, and a policy. Reward
outcome is central to all forms of RL and consists of a quantity the
agent gets as a result of its actions within the environment. The
agent then computes a value function using that reward outcome
that calculates the expected value of certain states/contexts as
well as the conjunction of specific states and actions. The agent
uses these value functions to develop a set of preferred actions,
known as a policy. A model of the environment is an optional
component of RL that can provide the organism with guidance on
how to move from state to state.
In dynamic programming, developed by Bellman for engineer-

ing applications, a complete model of the environment is
required. This idea requires the action of an agent to be guided
by the expected payoff of the action in addition to the total
expected payoff of potential actions in hypothetical future
states.29 The same principle applies to temporal discounting
(TD) models, the predominant form of RL model applied in
psychological studies of humans and other animals.30 TD learning
notably differs from dynamic programming, as it does not require
any model of the environment. Instead, learning is accomplished
by comparing expected reward to actual reward after a certain
transition in time. This difference is the reward prediction error.
This prediction error is used to update the value function and,
ultimately, the policy of an agent interacting with its environment.
Prediction error signaling is indeed the fundamental attribute of
the original models of learning.28 In simple terms, a prediction
error calculates the difference between what the animal expects
to have happen and what actually happens to the animal on a
given event or trial.31 This can also be described as an error
signal.32
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PREDICTIVE CODING AND REINFORCEMENT LEARNING IN THE
BRAIN
Prediction errors are effectively used as the signal that drives self-
referenced learning. Organisms update their behavior on a trial by
trial basis to account for new information provided by this
discrepancy in expectation and outcome. In particular, the reward
prediction error, which calculates the difference between
expected payoff and received payoff, has been established as
the striking correlate of a mathematical learning rule in
neurobiology.33

A classic type of reward prediction error encoded in the brain is
consistent with the type required for TD learning.34 Owing to the
essential nature of reward to adaptive behavior, areas that encode
reward are some of the best studied regions of the brain besides
the regions of the brain involved in sensorimotor transformations.
Classically, the dopaminergic substantia nigra35 and the ventral
tegmentum36 as well as the dorsal and ventral striatum37 have
been shown to be primary areas that process reward receipt and
valuation, with dopamine’s relationship to reward now known as
one of the most iconic behavior to neurotransmitter associa-
tions.38 As one might expect, these areas provide strong examples
of encoding reward prediction errors.39, 40

Reward prediction error signals have also been found elsewhere
in the brain. Primate lateral habenula neurons encode reciprocal
information about reward outcomes to the previously described
dopamine neurons in the midbrain.41 Notably, the activity of the
lateral habenula neurons precede the activity of the dopamine
neurons, suggesting that the lateral habenula neurons serve as an
input for the prediction error signal detected in the midbrain.41

Furthermore, functional magnetic resonance imaging (fMRI) in
humans has revealed the presence of multiple kinds of prediction
errors and other learning-related signals across many reward-
related structures in the cerebral cortex,42–44 indicating that the
prediction error signaling is a widely generalized mechanism
linking learning and decision-making. Applying these models to
conceptualizing behavior and neural activity has proved fruitful in
the study of learning and decision-making, perhaps most
famously in the finding that midbrain dopamine neurons
represent the TD reward prediction error.33

At least two important branches of research into RL in the
neurosciences continue today. The first involves the potential
balance between neural substrates of model-free (basic TD
learning) vs. model-based (akin to dynamic programming)
learning.44 These studies have collectively identified neural
substrates of the model-based state transition error,45 representa-
tion of model-based in addition to model-free prediction error in
the striatum and ventromedial prefrontal cortex,46 as well as brain
areas that act as arbiters between model-free and model-based
approaches.47 The second branch is vicarious reinforcement,
which can also be modeled in a RL framework to account for how
other’s behaviors could be used to update our own learning and
decision-making processes using vicarious classes of prediction
errors.48 RL can potentially be implemented in social learning
about the actions and rewards of others.48–50

Such vicarious reinforcement in an RL framework would
intuitively have to be performed in a model-based manner, as it
is unclear how a model-free RL system could possibly learn about
another agent without creating and updating a model of the other
agent’s potential thoughts and future actions. Accordingly,
research into how humans may use RL mechanisms to learn and
make inferences about others have used a modified Q learning
framework that involves a simulated other.50 Still, although RL
constitutes a strong opportunity to explain and conceptualize
social learning, there exist other computational frameworks that
may be applied to social cognition. For example, some have
argued that the putative TD reward prediction error forming the
basis of RL theories may instead be interpreted in terms of

expectation violation or even salience, especially in relation to
activity in cortical regions.51, 52 Other models specifically designed
to elucidate mentalizing via game theoretic approaches have
been highly successful in exploring social behaviors in the relative
absence of an explicit RL framework. These mainly consist of
algorithms that produce iterative representations of other agents
recursively ad infinitum.53, 54 Such approaches have not only
explained typical human behavior in a stag-hunt game, but have
also identified specific deficits in recursive social cognition in
patients with autism spectrum disorders.55

Prediction error signals can occur for a variety of different
events to be learned about, like action values, reward value, and
reward timing.40, 56, 57 Furthermore, prediction errors are not
limited to the reward domain. Evidence of prediction error
calculations are even present in sensorimotor areas of the brain
that deal with fine tuning actions like the cerebellum and the
frontal eye fields31 (see Table 1 for types of prediction errors and
associated brain regions). Therefore, a critic signal is responsible

Table 1. Representative list of brain areas in which signals that can be
described as prediction errors have been found from either primate
electrophysiology or human neuroimaging studies

Prediction error computed Correlated brain area

Egocentric

Self action SC31 OFC31

(action executed)—(action Cerebellum31 ACC31

intended) FEF31 MCC85, 86

LIP31

dlPFC31

Self reward outcome VTA33, 34, 36, 57 LHb41

(actual reward outcome)—(expected
reward outcome)

VS/other
striatum31, 56, 84

ACC86

SN35, 56 dlPFC31

Self reward value vmPFC40

(actual value of reward)—(expected VTA40

value of reward) SN40

Self reward timing VTA35, 57

(actual timing of reward)—(expected
timing of reward)

SN35, 57

Allocentric

Other action dlPFC84 VS/other
striatum63–68

(other’s actual action)—(other’s
expected action)

dmPFC91

Other reward outcome ACCg48 MTG42

(other’s actual reward)—(other’s vmPFC84 STS42

expected reward) dmPFC42 TPJ42

Other motivation ACCg48

(other’s actual motivation)—(other’s
expected motivation)

This is not a comprehensive list but rather a list to highlight the presence
of predictive coding in the brain. Note that the list for the action-related
error signals is mostly adapted from Schultz and Dickinson31 review
ACC anterior cingulate cortex, ACCg anterior cingulate gyrus, dlPFC
dorsolateral prefrontal cortex, dmPFC dorsomedial prefrontal cortex, FEF
frontal eye field, LHb lateral habenula, LIP lateral intraparietal area, MCC
middle cingulate cortex, MTG medial temporal gyrus, OFC orbitofrontal
cortex, SC superior colliculus, SN substantia nigra, STS superior temporal
sulcus, TPJ temporoparietal junction, vmPFC ventromedial prefrontal
cortex, VS ventral striatum, VTA ventral tegmental area
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for correcting behavioral outputs and cognitive representations
across a variety of functional domains of the brain, endorsing the
notion that predictive coding is a key feature of the brain.
As strides in describing increasingly complex human behaviors

have been made, attempts to carry the study of learning and
decision-making for the self into learning and decision-making
that takes into account the behavior of others is now a subject of
intense interest. Reacting appropriately to conspecifics and
correctly anticipating their behavior is a necessity for social
organisms, requiring them to rely on understanding each other
just as much as they rely on understanding where to forage for
food to survive. As expected, learning about others and
representation of self and other are mediated by several reward-
related brain structures.

NEURAL BASIS OF SELF-REFERENCED AND OTHER-
REFERENCED REINFORCEMENT SIGNALS
In this section, we discuss selected research findings that have
provided novel insights into how the brain signals self-referenced
and other-referenced information in the domain of reinforcement
learning and decision-making. When applicable, we focus on
other-referenced prediction error signals regarding actions and
reward outcomes relevant to reward-guided social learning.

Striatum
Recent advances in the field of neuroscience have elegantly
provided various supports for the use of RL mechanisms of
learning about others. Although the striatum has long been a
center of focus for self-referenced reward information and
prediction error in the brain, the role of striatum in learning is
not restricted to self-referential processing. In a study examining
observational learning and vicarious reinforcement with respect to
dopamine release, observer rats vocalized more and experienced
significantly more dopamine release in the ventral striatum when
seeing another rat receive reward compared to when reward was
delivered to an empty box.58 These results extend the role of
dopamine release in associations with prediction error signaling to
the social domain, implicating the involvement of the similar RL
mechanisms for signaling other’s reward outcome. Notably, the
degree of dopamine release for other’s reward outcome was still
substantially weaker compared to one’s own reward, suggesting
that similar mechanisms are utilized but in ways that could be
differentiated for self and other.58 In monkeys engaged in a task
environment involving actions from and reward outcomes for self
and other, neurons in the striatum signal one’s received reward
but not the reward received by others while signaling the actions
performed by others,59 indicating that there may be specializa-
tions for signaling self-referenced and other-referenced informa-
tion in the striatum, and this differentiation may further depend
on the encoding of action and reward outcome of another
individual.
There is also evidence that the striatum represents other-

referenced reward and prediction errors from human fMRI studies.
When socially evaluated by peers, previous positive social
interaction with an individual led to that individual being
associated with positive outcomes, which correlated with activity
in the striatum as well as the orbitofrontal cortex. This suggests
that social interaction can similarly activate brain regions that
typically signal reinforcing values of primary reinforcers.60 The
striatum also appears to be involved in the relative valuation of
reward where other’s performance is compared to one’s own
performance.61, 62 In an ultimatum game where subjects give
money to a partner and receive a proportion of it back, activation
of the striatum was also correlated with prediction errors that
reflect the difference between the offer the subject received from
the partner and what they expected the partner to give, but not

between how the subject expected to feel and how they actually
felt, which appears to be reflected in ventromedial prefrontal
cortex (vmPFC) and the posterior cingulate cortex.63

Furthermore, RL-like prediction errors regarding expectations
formed about how others viewed the subjects were correlated
with activity in the striatum, OFC, rACC, and anterior insula.60 A
variety of economic-game style tasks that require learning about
other’s actions and outcomes and/or modeling the internal states
of others have reported that the striatum is implicated in these
processes. For example, the observed actions of others influence
one’s own economic decisions and this is reflected in striatal BOLD
response.64 Furthermore, if added payoff for social learning is
removed, so that only pure observation of others is necessary for
the task, an interpersonal prediction error still occurs in the
striatum.65 Similarly, there is evidence from a reciprocity game
that learning to trust or not trust others based on their behavior is
mediated by a prediction error signal in the caudate nucleus.66

Interestingly, these other-referenced prediction errors in the
striatum may even be associated with social norms, given their
activation in economic games that rely on feedback from others. A
prediction error type signal associated with going against group
opinion also has been shown to correlate with how subjects
changed their behavior to conform with the group on subsequent
judgements.67

In a trust game where an investor gives money to a trustee who
can return a proportion of the money, the difference between the
trustee’s repayment ratio expected by the actor and what the
trustee actually repaid resulted in a prediction error in the striatum
in the subjects who relied on the behavior of the partner for
learning.68 In addition, in the same study, the difference between
the investment ratio and the investor’s model of the other’s model
of what the investor will do formed a second order prediction
error. Notably, the study found that a subject who failed to deeply
model the mind of the partner experienced more striatal
correlates of the first type of prediction error (i.e., relying more
on the action of the other), whereas the more a subject modeled
the mind of the partner, the more likely they were to activate the
striatum for the second order prediction error (i.e., relying more on
the mental representation of the other).

Anterior cingulate cortex
The anterior cingulate cortex (ACC) is implicated in a variety of
behaviors and cognitive states,48, 69–71 and could be summarized
as an integrative area that relates to motivation and initiating
reward-guided or goal-directed behaviors. Seen in this light, ACC
may be a core locus of integrating different streams of self-
referenced and other-referenced information for generating an
adaptive action plan (see Fig. 1 for visualization of other-
referenced reward and action areas of the brain). This is bolstered
by the considerable evidence that ACC is engaged during social
decision-making, with its neuronal signals reflecting information
processing about self, other, or both.48, 72–77 In the domain of
observational learning, the ability of mice to learn by observing
the shock of conspecifics can be effectively abolished by ACC-
specific deletion of calcium currents.78 Relatedly, observational
aspects of pain have been a major focus for investigating empathy
in the human brain. Observing a demonstration of another person
being injured and experiencing pain elicits empathic concerns and
actively engages a specific portion of the ACC that is also similarly
activated when experiencing pain.79 Such shared mechanisms
support that observation-driven vicarious pain processing was co-
opted or repurposed from processing one’s own pain.
ACC may represent a critical junction in the cortical pathway of

representing and differentiating self and other through processing
motivation from the perspectives of self and others.48 Monitoring
the spiking activity of individual ACC neurons while monkeys
played a social reward allocation task, in which an actor animal has
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an option to deliver or withhold juice rewards to and from the
recipient,80 showed that there are specializations with respect to
signaling the reward outcome of self and other. More specifically,
in the gyrus of ACC (ACCg), some neurons exclusively encode self
reward, whereas others exclusively encode other’s reward, and still
some encoded the reward outcomes of self and other.81 Notably,
lesioning ACCg, but not the ACC sulcus (ACCs), abolishes social
valuation in monkeys,82 indicating a causal contribution of ACCg
in social cognition. Similarly, in the human brain, the rostral ACC
neurons, overlapping with the ACCg neurons mentioned above,
signal-reward outcomes from others during a card game requiring
observational learning.77

Furthermore, neurons in ACC have been shown to mediate
collective reward-guided actions when monkeys play a prisoner’s
dilemma game,74 providing strong evidence that self and other

processes are integrated in ACC. The evidence of self and other
integration in ACC is also supported by the presence of an
anatomical gradient along the human cingulum mapping self and
other in a trust game that is absent without a responding
partner.83 Moreover, it has been postulated that the ACCs and the
ACCg represent distinct streams of information.18, 48, 72, 82

Accurate social learning requires multiple types of prediction
error signals with respect to others (see Fig. 2 for representation of
self-referencing and other-referencing prediction errors in the
brain). For example, observational action prediction errors signal
the difference between the actual action of the other and the
expected action, whereas vicarious outcome prediction errors
signal the difference between the actual and the predicted
outcome of the other.48, 84 Furthermore, to estimate the
motivation of others, vicarious dynamic prediction errors signal
the difference between the actual and estimated movement
kinematics of others during their actions.48 Prediction errors for
self-referenced action values have been reported in ACC,85, 86 and
both the sulcus and gyrus portions of the ACC are implicated in
self-reward valuation and decision-making.87, 88 The ACCs is most
well-studied for involved in multitudinous functions, from error
detection and motivation to cognitive control and response
selection.85 Recently, there is an extensive debate over whether or
not ACCs are involved in computing value-guided behavioral
adaption or cognitive control.69–71

Notably, there seem to be functional dissociations for signaling
self-referenced and other-referenced information between the
gyrus and sulcus. For example, prediction errors related to the
choices made by another person are found in the ACCg but not in
the ACCs.48, 89 Furthermore, the ACCs neurons encode reward
outcomes in self-referenced manner in a social decision-making
task, whereas a sub-group of the ACCg neurons do so in an other-
referenced manner.72 Similarly, in a competitive game, self-
referenced reward outcome prediction errors correlate with
activity in the ventral striatum, but, critically, belief-based
prediction errors about the competitive partners action are
encoded in rostral ACC (rACC).90 Furthermore, in a social
decision-making task involving utilizing advice from another
person, learning rates for self and other are differentially
computed by the ACCs and the ACCg, respectively.49 Overall,
although social signals have been detected in ACC, the ACCg is
most clearly linked to other-referenced information processing
based on accumulating evidence spanning whole-brain neuroi-
maging, electrophysiological recording, and anatomical
specializations.48

Prefrontal cortex
The prefrontal cortex has many subsections, and is often thought
of as the locus of higher level cognitive processes related to
decision making. It is intuitive, then, many parts of the prefrontal
cortex process other-referenced information. When observing
erroneous choices by another individual informs an association
between a specific target and a possible reward during a turn-
taking decision-making task in pairs of monkeys, neurons in the
dorsomedial frontal cortex encode the errors made by the partner
monkey, serving a social error monitoring function,91 which relies
on other-referenced information. Similarly, the vmPFC encodes in
humans the value of observing another person’s behavior in a
reward seeking task, and correlates with that individual’s move
towards conforming to social norms.92 Other types of prediction
errors are also found in the prefrontal cortex. When participants
learn the contingencies between stimulus and reward outcome
through direct experience or observing the action and outcome of
another person, different reward-related prefrontal structures
signal learning-related events for self and other. In such scenarios,
the ventral striatum signals self prediction errors, the dorsolateral

PCC
ACCs

ACCg

PrCu

dlPFC

dmPFC

vmPFC

MTG

TPJ

STS

IPL

Fig. 1 Key brain regions involved in representing information with
respect to another individual. These areas are often implicated in
mentalizing, detecting the beliefs of others, or signaling decision
variables concerning another individual. See texts for how these
areas are implicated in representing information with respect to
another individual. The insets with coronal magnetic resonance
images indicate the sections (red line) that correspond to the Nissl-
stained sagittal slices. The dotted outline around an area indicates
that this area is projected medially from the lateral surface for the
purpose of including the area on a more medial aspect of the brain.
Adapted with permission from http://www.brains.rad.msu.edu,
http://brainmuseum.org, supported by the US National Science
Foundation and the National Institutes of health. ACCg anterior
cingulate gyrus, ACCs anterior cingulate sulcus, dlPFC dorsolateral
prefrontal cortex, dmPFC dorsomedial prefrontal cortex, IPL inferior
parietal lobule, MTG medial temporal gyrus, PCC posterior cingulate
cortex, PrCu precuneus, STS superior temporal sulcus, TPJ tempor-
oparietal junction, vmPFC ventromedial prefrontal cortex
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prefrontal cortex (dlPFC) signals other’s action prediction errors,
and vmPFC signal other’s outcome prediction errors.84

Furthermore, Suzuki et al.50 examined the neural correlates of
learning stimulus-reward outcome contingencies when partici-
pants learned the association directly and when the participants
predicted which stimulus another person will likely choose,
encouraging the participants to model or mentally simulate the
other individual. This manipulation necessitated the use of an
other-referenced prediction error, one that calculates the dis-
crepancy between what the other person does and what the
participant thought the other person would do. Again, different
parts of the prefrontal cortex are engaged as a function of self-
referenced and other-referenced computation. The vmPFC tracked
the simulated other’s prediction error in a similar manner to self,
whereas the simulated other’s action prediction error was signaled
by the dorsomedial prefrontal cortex (dmPFC) and dlPFC.50

Notably, neuronal activity in the monkey dmPFC has been shown
to closely reflect the strategy of an opponent in a competitive

reward-based task, further strengthening the specialized role of
dmPFC in simulating others.93 This is consistent with the findings
of Behrens et al.,49 in which separable reward signals were
computed in ACCg and ACCs for other- referenced and self-
referenced reward information, respectively, and that these
signals were integrated in vmPFC.
Finally, the orbitofrontal cortex (OFC) is a key cortical region for

signaling reward value94 and is also associated with showing value
prediction error signaling.95 Although OFC neurons are sensitive
to social reward context involving self and other,96 the reward
outcome encoding of these neurons seems to be self-refer-
enced,72 suggesting that OFC may be more restricted to
mediating behavioral adaptations, including adjusting to social
context, in a self-referenced framework.
Encoding of various prediction errors regarding others is a

signature of many reward-related regions of the brain, suggesting
a tight biological link between self learning and learning about or
from others. In particular, these findings endorse the notion that
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comprehending and learning from the experience of another
person is processed under shared predictive coding principles
with particular regional specializations for the self and other
domain.

Temporal parietal junction and mentalizing networks
When ToM is engaged, demanding the modeling of another
individual, precuneus (PrCu), posterior cingulate cortex (PCC), as
well as superior temporal sulcus (STS), temporal parietal junction
(TPJ), and the medial prefrontal cortex (mPFC) are particularly
activated over others.97 STS and TPJ have long been considered as
the neural hotspots for higher-level cognitions like ToM and
modeling the minds of others. TPJ, in particular, has been
regarded as a uniquely social cognition-focused area,98 with
evidence that TPJ is necessary for representing the belief of
others.99 A meta-analysis of ToM-related areas determined that
the most reliably implicated areas are TPJ and mPFC, with
activations in PrCu and STS being sensitive to the types of ToM
engaged in the context of various ToM measures.100 Notably,
researchers have found a close link between self-referential
thoughts and mentalizing of others in mPFC,101 indicating how
self-referenced and other-referenced information is associated
with one another in one of the key regions of the mentalizing
network.
Notably, recruitments of TPJ and STS are not specific to tasks

designed to measure ToM. TPJ and STS are also activated
in situations when considering other’s information to guide one’s
actions, suggesting their involvements in broadly defined other-
referenced computation. When participants take into account the
advice of another person to make a decision about obtaining
potential rewards, dmPFC, middle temporal gyrus (MTG), STS, and
TPJ activations signal social prediction error.49 Furthermore, when
playing a simplified poker game against a human opponent and a
computer algorithm, TPJ emerges as a unique region for
predicting social decisions that are behaviorally relevant.102 In
addition, STS has been well known for their roles in social
perception from visual cues.103 Therefore, tracking and interpret-
ing socially relevant information may be the fundamental building
blocks of these areas constituting a so-called mentalizing network.
Recently, an elegant proposal was put forward suggesting that TPJ
is a computational hub in which distinct cognitive processes, like
attention, memory, sensory perception, and language all converge
together to generate a representation of behaviorally relevant
social context.104

Corresponding to this idea, many of the nodes in this proposed
mentalizing network have been observed to perform additional
functions potentially relevant to other aspects of social behavior.
For example, PCC has been proposed to compute subjective
value105 as well as other-related social processes including person
perception, person updating, and first impressions.106–108

CONCLUDING REMARKS
Hale and Saxe109 have proposed that mentalizing may be a
fundamentally predictive process. Although our current under-
standing of how the brain implements processes described in
theory–theory or simulation theory is not complete, the fact that
other-referenced prediction errors appear to be represented
neurally suggests that there are shared prediction-based learning
mechanisms for social learning and reinforcement learning. The
neural mechanisms underlying other-referenced learning may be
co-opted from the predictive mechanisms used to learn for the
self, one of which is prediction error signaling. Connecting the
terminology of reinforcement learning and decision making to the
social domain can enhance the development of ideas and
methods in studying how we think about others.110

There are many additional dimensions of other-referenced
learning that remain to be explored. As experimenters continue to
push the limits of studying social learning, interaction, and
valuation; we may find ourselves brushing up against the limits of
how the brain operationalizes what is “social” and “nonsocial”.
Beyond other-referenced representations in the brain, social
processing can also refer to the comparison of social agents and
nonsocial, yet interactive, agents. Although divergent brain areas
may apply similar computations to account for self and other, the
neural processes underlying social information processing may
not be categorically distinct from other types of information, but
rather lie on a continuum. For example, when human participants
play a game with other individuals or slot machine partners
programmed to display varying levels of generosity, activations in
TPJ, PCC, PrCu, vmPFC, and several other regions reflected the
prediction errors for generosity similarly for both human and slot
machine partners.111

This finding and many others that have observed modulatory
differences in brain activations between social and nonsocial
information may suggest that the brain may not in fact
differentiate the two categorically but processes information as
a function of implementing algorithms demanded by specific
behavioral constraints. Perhaps social functions could be regarded
as repurposed ancestral functions of the brain evolved to deal
with an organism’s social environment.112 Then the notion of the
“social brain” should be concerned with how specific sets of
commonly used computational algorithms are utilized to guide
adaptive behaviors.
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