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Abstract Few studies have addressed the neural computations underlying decisions made for

others despite the importance of this ubiquitous behavior. Using participant-specific behavioral

modeling with univariate and multivariate fMRI approaches, we investigated the neural correlates

of decision-making for self and other in two independent tasks, including intertemporal and risky

choice. Modeling subjective valuation indicated that participants distinguished between themselves

and others with dissimilar preferences. Activity in the dorsomedial prefrontal cortex (dmPFC) and

ventromedial prefrontal cortex (vmPFC) was consistently modulated by relative subjective value.

Multi-voxel pattern analysis indicated that activity in the dmPFC uniquely encoded relative

subjective value and generalized across self and other and across both tasks. Furthermore, agent

cross-decoding accuracy between self and other in the dmPFC was related to self-reported social

attitudes. These findings indicate that the dmPFC emerges as a medial prefrontal node that utilizes

a task-invariant mechanism for computing relative subjective value for self and other.

DOI: https://doi.org/10.7554/eLife.44939.001

Introduction
Decision-making on behalf of other individuals is ubiquitous in daily life, from parents making deci-

sions about the wellbeing of their children to financial advisors making economic decisions to maxi-

mize returns for their clients. A vital parameter in making decisions is the separation of the

subjective value between the chosen and unchosen options, defined here as relative subjective

value. When the values of two options are similarly preferred, relative subjective value is low, while

relative subjective value is high when the values of two options are dissimilarly preferred. We

encounter such considerations when we make decisions on behalf of others, much like we do when

we make decisions for ourselves. It is therefore crucial to understand how such decisions are formu-

lated in the brain when we make decisions for ourselves or for those around us.

Most previous studies have focused on subjective value in self-referenced decisions. These studies

have identified neural correlates in the medial prefrontal cortex, including the ventromedial prefron-

tal cortex (vmPFC) (Kable and Glimcher, 2007; Levy et al., 2010; McClure et al., 2004) and dorso-

medial prefrontal cortex (dmPFC), which is anatomically proximal or overlapping with multiple

subregions including the dorsal anterior cingulate cortex (dACC) and pre-supplementary motor area

(pre-SMA) (Kolling et al., 2016; Kolling et al., 2012). Other studies regarding self-referenced deci-

sion-making have focused instead on other decision-related processes, such as conflict, with most
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indicating the importance of the dmPFC and dACC (Botvinick et al., 2004; Botvinick et al., 2001;

Braver et al., 2001; Lin et al., 2018; Venkatraman et al., 2009a; Venkatraman et al., 2009b), and

affect regulation, which is thought to be one of many roles ascribed to the vmPFC (Delgado et al.,

2016). Together, these studies indicate clearly delineated functions of medial prefrontal subregions

in value-based decision-making in self-referenced decisions.

On the other hand, existing studies of decision-making for others have reported divergent results.

Early work using an intertemporal choice paradigm did not detect subjective value representation in

the brain during decision-making for others (Albrecht et al., 2011). However, later work using a sim-

ilar paradigm with behavioral modeling of subjective value determined a gradient from ventral to

dorsal medial prefrontal cortex such that value for whoever a participant was making decisions at a

given time was represented ventrally, while value for whoever a participant was not making decisions

was represented dorsally (Nicolle et al., 2012). Still other studies using a prosocial learning frame-

work have reported a categorically different ventral to dorsal gradient in the medial prefrontal cortex

in which value for self is represented ventrally, while value for other is represented dorsally

(Sul et al., 2015). This gradient was modulated by the social attitudes of participants, such that

more prosocial individuals tended to display value representations for others more ventrally in the

medial prefrontal cortex (Sul et al., 2015). Furthermore, a study implementing a computational

model for describing altruistic choice based on a drift diffusion framework indicated that both self

and other contributions to value calculation occur in the vmPFC (Hutcherson et al., 2015). Other

studies using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have

also found evidence for shared neural signals of value across self and other (Jenkins et al., 2008;

Janowski et al., 2013). Some studies have also used repetition suppression to show the impact of

judging and learning about others’ preferences on activity in the medial prefrontal cortex and ulti-

mately on one’s own preferences (Garvert et al., 2015; Harris et al., 2018). Finally, a recent study

has suggested that the anterior dmPFC is involved in calculating normative value during social influ-

ence in decision-making (Apps and Ramnani, 2017). Together, the results of these studies seem to

uniformly indicate the importance of various subregions of the medial prefrontal cortex in computing

subjective value across both self and other. However, how individual subregions within the medial

prefrontal cortex accomplish this calculation is still an area of active speculation, perhaps because

most previous studies have relied on a single task and a single analytical method. To date, studies of

value-based decision-making across self and other using multiple distinct experimental tasks and

analytical techniques remain sparse.

To identify which brain areas amongst these medial prefrontal subregions compute relative sub-

jective value from the perspective of self and other in a manner that is both invariant to different

task demands as well as analytic approaches, we determined its neural correlates using fMRI in con-

junction with both univariate and multivariate analytic techniques in a single unified study. To pin-

point task-invariant responses, we examined neural representations of relative subjective value for

self and other under two independent sets of experiments, using either intertemporal or risky choice

paradigms. Additionally, we varied the similarity of the other individual for whom the participant

made choices. Finally, we examined whether the vmPFC and dmPFC, when analyzed using either

univariate general linear model (GLM) or multivariate multi-voxel pattern analysis (MVPA) techniques,

represent relative subjective value across self and other in both behavioral tasks regardless of the

similarity of the other individual for whom participants made choices.

The ‘common-currency’ hypothesis (Levy and Glimcher, 2012; Bartra et al., 2013), a core theory

in economics, could be useful in guiding expected results related to self and other representation of

subjective value in our study. Although this theory has only recently been proposed in relation to

decision-making studies exploring how people make decisions for other individuals (Ruff and Fehr,

2014; Zaki et al., 2014), explicit tests of whether the brain represents subjective value in an overlap-

ping neural code for self and other and across different behavioral demands are currently absent

from the literature. Whereas previous studies used only a single analytic technique and a single

behavioral paradigm to explore social decision-making, we aimed to utilize a unique combination of

analyses and experimental tasks to explicitly test for the first time whether value representation in

any neural region is shared when people make decisions for themselves and others across varying

behavioral contexts.

Our results indicated that relative subjective value signals were present in both the dmPFC and

vmPFC across self and other as well as in both behavioral paradigms, such that dmPFC activity
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negatively and vmPFC activity positively correlated with relative subjective value, respectively. Cru-

cially, our results indicated that activity in the dmPFC, but not other medial prefrontal regions

tested, was able to detectably encode relative subjective value, and this neural code retained infor-

mation across self and other and displayed cross-task decodability. Together, these results present

the first evidence for an overlapping neural code in the medial prefrontal cortex for self and other

individuals that is remarkably consistent even across fundamentally different behavioral paradigms.

Results
Two independent fMRI sessions were included, one in which participants performed an intertempo-

ral choice task (N = 20) and one in which participants performed a risky choice task (N = 21). The

intertemporal choice task (Figure 1a) involved participants making choices between lower amounts

of money sooner or higher amounts of money later both for themselves (‘Self’ trials) and for another

participant in the study (‘Other’ trials). Participants’ baseline intertemporal choice preferences were

assessed in a preliminary behavioral session outside the scanner (Figure 1—figure supplement 1a,

b). The calculated discounting preferences were then used to pair high-discounting participants with

low-discounting participants, and vice versa. Just prior to the fMRI session, participants learned

about the person for whom they would be making choices in a separate learning task that involved

guessing what the other person would choose before receiving feedback (Figure 1—figure supple-

ment 1c). Minimum criterion to be included in the study was an accuracy of 80% (mean accuracy

89.3%, s.e.m. = 1.0%). For the intertemporal choice task, trial sets were designed individually for

each participant via simulation to ensure that relative subjective value was uncorrelated between

Self and Other trials. This was confirmed following completion of the study (for Self trials, mean cor-

relation r = 0.19, s.e.m. = 0.10, z = 1.57, p=0.117, for Other trials, mean correlation r = 0.15, s.e.

m. = 0.10, z = 1.08, p=0.279, Spearman correlation and Wilcoxon signed rank test). For the risky

choice task (Figure 1d), participants made choices between lower amounts of money with higher

probabilities or higher amounts of money with lower probabilities for themselves and for another

participant in the study. However, while participants were told that they were making choices for

another individual, the other participant in the risky choice task was fictional and based on the partic-

ipants’ own risk preferences as determined by a preliminary choice task completed online. Partici-

pants learned about the risk preferences of the fictional other participant in a learning task prior to

scanning (Figure 1—figure supplement 1d), with criterion again set at 80% (mean accuracy 87.6%,

s.e.m. = 1.2%).

Behavioral modeling reveals distinct choice patterns for similar and
dissimilar others
For the fMRI intertemporal choice sessions, behavior was modeled using hyperbolic decay functions

with either one discounting parameter (k) across Self and Other trials or two discounting parameters

with one for Self trials and one for Other trials. Low values for k indicate that participants are willing

to wait longer amounts of time, whereas high values for k indicate that participants are less willing

to wait to receive more money. Additionally, models were included that had either one noise param-

eter (b) for action selection across Self and Other trials or had two b parameters, one for Self trials

and one for Other trials. When participants were paired with another individual with very different

discounting preferences, the hyperbolic model with two discounting parameters but one b parame-

ter fit best (Figure 1b; Figure 1—source data 1; mean BIC 66.8, s.e.m. = 3.4), with high discounters

having higher discounting parameters for Self trials and low discounters having higher discounting

parameters for Other trials (Figure 1c; high discounters z = 2.80, p=0.005, low discounters z = 2.80,

p=0.005, Wilcoxon signed rank test).

Decision behavior in the risky choice task was modeled using prospect theory, in which risk atti-

tudes are defined by a. Low values for a indicate risk aversion, whereas high values for a indicate

risk tolerance. We again tested separate models, with either a single value for a across Self and

Other trials or two values for a, one each for Self and Other trials. Variants of these models with

either one or two b action selection parameters were also included, for a total of four models. Par-

tially diverging from the results of the intertemporal paradigm, the model with one value for a and

one value for b across self and other fit best (Figure 1e; Figure 1—source data 1; mean BIC 101.2,

s.e.m. = 4.3) with no differences observed between a values for self and other in the model with two
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parameters for a and one b parameter (Figure 1f; risk seeking z = 1.48, p=0.139, risk averse

z = 1.00, p=0.328, Wilcoxon signed rank test). This indicated that participants viewed the other indi-

vidual as someone with similar preferences. Together, these results indicated that participants con-

sidered similar or dissimilar preferences when making decisions for others. Furthermore, the fact

that models with one b parameter across Self and Other trials performed better than models with
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Figure 1. Participants differentiate between similar and dissimilar others in the intertemporal and risky choice tasks. (a,d) Intertemporal (top) and risky

(bottom) choice task design. Every 15 trials, participants were presented with either ‘Self’ or ‘Other’ to indicate for whom they would be making choices

in a given block. Each trial involved the presentation of two options, and participants were given the opportunity to indicate their choice either for

themselves or for another participant in the study with a left or right button press. (b,e) Summed Bayesian information criterion (BIC) for the one and

two discounting or risk parameter models for the intertemporal (top) and risky (bottom) choice tasks, respectively. For each of these models, variants

with a common b parameter or two b parameters, one for Self and one for Other trials, were also included. Downward arrows indicate the best fitting

model as determined via lowest BIC. (c,f) Self minus Other discounting parameters (k) or risk parameters (a) for the intertemporal (top) and risky

(bottom) choice two-parameter models, respectively, each with one b parameter. For each analysis, participants were median-split into either high or

low discounting or risk tolerance based on the value of their fitted k or a parameters for Self trials. Data are plotted as box plots for each condition in

which horizontal lines indicate median values, boxes indicate 25–75% interquartile range and whiskers indicate minimum and maximum values; data

points outside 1.5x the interquartile range are shown separately as crosses. *** indicates p=0.005, Wilcoxon signed rank test. N = 20 participants for

intertemporal choice with 10 high-discounting and 10 low-discounting individuals, N = 21 for risky choice with 11 high-risk tolerance and 10 low-risk

tolerance individuals.

DOI: https://doi.org/10.7554/eLife.44939.002

The following source data and figure supplements are available for figure 1:

Source data 1. Bayes factor approximation for behavioral model fitting.

DOI: https://doi.org/10.7554/eLife.44939.006

Figure supplement 1. Behavioral results from the preliminary behavior-only intertemporal choice task as well as the intertemporal and risky choice

learning tasks.

DOI: https://doi.org/10.7554/eLife.44939.003

Figure supplement 2. Choice behavior is more impacted by subjective value than individual trial variables.

DOI: https://doi.org/10.7554/eLife.44939.004

Figure supplement 3. Response times differ between high and low-relative subjective value trials but not for Self and Other trials for both behavioral

paradigms.

DOI: https://doi.org/10.7554/eLife.44939.005
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two separate b parameters for Self and Other trials in both tasks indicated that choice stochasticity

did not substantially differ when participants made choices for self or other.

We next aimed to determine whether the subjective value of each option on a given trial calcu-

lated using the best fitting models for each paradigm accounted for choice behavior. To demon-

strate that participants were taking subjective value into account when making choices, we

calculated the proportion of trials in which participants chose the option with the higher subjective

value, monetary value, or either lower delay for the intertemporal choice task or higher probability

for the risky choice task. As anticipated, participants made choices according to subjective value sig-

nificantly more than either monetary value or delay alone for both Self and Other trials in the inter-

temporal choice task (Figure 1—figure supplement 2a; compared to Self monetary, z = 3.72,

p<0.001, Self delay, z = 3.92, p<0.001, Other monetary, z = 3.85, p<0.001, Other delay, z = 4.01,

p<0.001, Wilcoxon signed rank test). Similarly, participants made choices according to subjective

value significantly more than either monetary value or probability of reward for both Self and Other

trials in the risky choice task (Figure 1—figure supplement 2b; compared to Self monetary,

z = 3.91, p<0.001, Self probability, z = 4.01, p<0.001, Other monetary, z = 4.01, p<0.001, Other

probability, z = 4.01, p<0.001, Wilcoxon signed rank test).

Finally, we examined response times in relation to the subjective value associated with each trial

as well as whether participants were making decisions for themselves or another individual. For the

subjective value analysis, we first calculated the relative subjective value of each trial by subtracting

the value of the unchosen option from the value of the chosen option. We then median split trials

into high and low relative subjective value. Response times were slower for trials with lower relative

subjective value than trials with higher relative subjective value for both the intertemporal and risky

choice paradigms (Figure 1—figure supplement 3a; intertemporal z = 3.10, p=0.002, risk z = 2.38,

p=0.017, Wilcoxon signed rank test). However, no differences in response times were observed

between Self trials and Other trials in either paradigm (Figure 1—figure supplement 3b; intertem-

poral z = 1.01, p=0.313, risk z = 1.20, p=0.231, Wilcoxon signed rank test). It is important to note

that each trial included a mandatory waiting period of 5 s before participants were allowed to indi-

cate their choice. While this may have diluted modulation of response times by task parameters, we

still observed that response times were detectably modulated by subjective value.

Decision-making for dissimilar but not similar others activates the
‘social’ brain
We first aimed to identify the neural correlates of decision-making from the perspective of self rela-

tive to other by performing a simple contrast of Other over Self trials, and vice versa. Notably, this

analysis was agnostic to the subjective values assigned to the options of a given trial and was instead

intended to merely identify whether our paradigm generally activated areas noted for importance in

social cognition in previous studies. For the intertemporal choice paradigm in which participants

were paired with others displaying dissimilar preferences, a contrast of other over self yielded signifi-

cant activations in the ventromedial prefrontal cortex (vmPFC; peak Montreal Neurological Institute

(MNI) coordinates [�8 42–20], zpeak = 4.55), the dorsomedial prefrontal cortex (dmPFC; coordinates

[�4 52 36], zpeak = 4.29), and the temporal-parietal junction (TPJ; coordinates [�48–56 46],

zpeak = 4.42; whole brain family-wise error (FWE) threshold at p<0.05, height threshold of p<0.001).

All three of these clusters overlapped with a Neurosynth (Yarkoni et al., 2011) term search for

‘social’, indicating that these areas of the brain were associated with social cognition based on previ-

ous studies (Figure 2; Figure 2—source data 1). Interestingly, for the risky choice paradigm in which

participants were paired with others displaying similar preferences, no clusters survived cluster cor-

rection at an FWE threshold of p<0.05 and a height threshold of p<0.001. No clusters were

observed for the inverse contrast of Self over Other trials at this threshold for either paradigm. Deci-

sion-making for dissimilar others, compared to similar others, was thus largely responsible for driving

activation of the ‘social’ brain in our dataset.

Activity in the medial prefrontal cortex is differentiated by relative
subjective value
In order to determine the effect of subjective value on prefrontal activity, we calculated relative sub-

jective value, defined as the subjective value of the chosen option minus the subjective value of the
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unchosen option. Using univariate GLM methods, we determined areas that corresponded to rela-

tive subjective value when pooling Self and Other trials together. For both the intertemporal and

risky choice paradigms, activity in the vmPFC positively correlated with relative subjective value

(intertemporal coordinates [0 46–4], zpeak = 4.25; risk coordinates [0 42–8], zpeak = 4.67), as did activ-

ity in the right temporal-parietal junction (TPJ; intertemporal coordinates [�58–40 24], zpeak = 4.82;

risk coordinates [�62–30 18], zpeak = 5.09). Conversely, activity in the dmPFC negatively correlated

with relative subjective value for both paradigms (intertemporal coordinates [8 22 48], zpeak = 4.57;

risk coordinates [0 14 52], zpeak = 6.36; whole brain FWE threshold at p<0.05, height threshold of

p<0.001). Relative subjective value clusters overlapped between paradigms in these three areas

(Figure 3a,b; Figure 3—source data 1). These neural results held with the inclusion of response

x = 0 x = -56

y = 50 z = 26

Intertemporal

Other > Self Trials

Overlap

Neurosynth: “social”

Figure 2. Decision-making for dissimilar others in the intertemporal choice paradigm drives activity in the ‘social’ brain. Statistical parametric maps

showing the contrast of Other over Self trials during the intertemporal choice task (blue), a term search for ‘social’ in Neurosynth (yellow), and the

overlap between the two analyses (green). We identified the neural correlates of decision-making from the perspective of other relative to self by

performing a contrast of Other over Self trials, and vice versa. For the intertemporal choice paradigm in which participants were paired with others

displaying dissimilar preferences, a contrast of other over self yielded significant activations in the ventromedial prefrontal cortex (vmPFC), the anterior

portion of the dorsomedial prefrontal cortex (anterior dmPFC), and the temporal-parietal junction (TPJ) at a whole brain family-wise error (FWE)

threshold of p<0.05, height threshold of p<0.001. All three of these clusters overlapped with a Neurosynth term search for ‘social’ (FDR-corrected to

p<0.01), indicating that these clusters overlapped with brain areas associated with social cognition in previous studies. For the risky choice paradigm, in

which participants were paired with others displaying similar preferences, no clusters survived even a lenient cluster correction at an FWE threshold of

p<0.05 and a height threshold of p<0.01. No clusters were observed for the contrast of Self over Other trials at this threshold for either paradigm.

N = 20 participants for intertemporal choice, N = 21 participants for risky choice.

DOI: https://doi.org/10.7554/eLife.44939.007

The following source data is available for figure 2:

Source data 1. Other over Self trials GLM contrast for the intertemporal choice paradigm and ‘social’ term search on Neurosynth.

DOI: https://doi.org/10.7554/eLife.44939.008
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Figure 3. Ventromedial prefrontal cortex (vmPFC) and temporal-parietal junction (TPJ) activity is positively correlated with relative subjective value,

while dorsomedial prefrontal cortex (dmPFC) activity is negatively correlated with relative subjective value. (a) Whole-brain statistical parametric map for

the positive (yellow) and negative (blue) correlation with relative subjective value, thresholded at p<0.05 FWE-corrected, cluster-defining threshold

p<0.001, for the intertemporal (left) and risky (right) choice paradigms (sagittal section, x = 2). (b) Simple overlap between the statistical maps for the

Figure 3 continued on next page
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times as a nuisance regressor. Differences in the strength of relative subjective value representation

between Self and Other trials were only observed when extracting effect sizes from the dmPFC in

the risky choice task (Figure 3c,d; z = 2.24, p=0.025, Wilcoxon signed rank test). Additionally, con-

trasts of relative subjective value representation for Other over Self trials exhibited clusters that did

not overlap across the intertemporal and risky choice paradigms (Figure 3—figure supplement 1;

Figure 3—source data 1), indicating that differences in value representation for other versus self

were not consistently observed across paradigms and could be due to specific task demands. In

either case, these findings together suggest similar and overlapping univariate representation of rel-

ative subjective value for both Self and Other trials.

As a control, we extracted effect sizes from vmPFC (Clithero and Rangel, 2014) and dmPFC

(Venkatraman et al., 2009a; Venkatraman et al., 2009b) ROIs for offline relative subjective value in

the intertemporal choice paradigm. Offline relative subjective value was defined as the value associ-

ated with the agent for whom the participant was not making choices in a given trial. In other words,

if one was making a choice for oneself, the discounting parameter associated with the other individ-

ual would be used to calculate relative subjective value, and vice versa. No offline relative subjective

value clusters survived cluster correction at an FWE threshold of p<0.05 and a height threshold of

p<0.001. Following extraction of effect sizes, no effects of offline value were found in the vmPFC or

dmPFC for either Self or Other trials in the intertemporal choice paradigm (vmPFC Self trials

z = 0.93, p=0.351, vmPFC Other trials z = 0.71, p=0.478, dmPFC Self trials z = 0.15, p=0.881,

dmPFC Other trials z = 0.56, p=0.576, Wilcoxon signed rank test), and offline effects were found to

be lower than online effects when directly compared (Figure 3c; vmPFC �
2 = 3.81, p=0.051, dmPFC

�
2 = 13.49, p<0.001, Friedman test).

This control may at first seem to contradict an earlier report using a nearly identical experimental

task that found that offline value was represented in the dmPFC (Nicolle et al., 2012). However, it is

important to note that this previous study examined subjective value as a GLM contrast between

neural representation of the subjective value of the chosen option over the neural representation of

the subjective value of the unchosen option. In this study, we utilized only a single GLM regressor,

defined as the difference between the chosen and the unchosen subjective value. When we recapitu-

lated the analyses used in the previous report (Nicolle et al., 2012), neural representation of offline

subjective value was indeed observed in the dmPFC when analyzing either Self and Other trials sep-

arately (Self trial coordinates [4 16 40], zpeak = 5.47; Other trial coordinates [2 12 46], zpeak = 6.08) or

Figure 3 continued

intertemporal and risky choice paradigms, including the positive (yellow) and negative (blue) correlation with relative subjective value (sagittal section,

x = 2; coronal section, y = �28). (c,d) Extracted % signal changes for positive (left; yellow boxes; vmPFC ROI) and negative (right; blue boxes; dmPFC

ROI) correlation with relative subjective value for the intertemporal (top) and risky (bottom) choice paradigms for Self and Other trials. Gray boxes

indicate the corresponding % signal change for offline relative subjective value in the intertemporal choice task. Insets show 8 mm spherical ROIs for

vmPFC (yellow) and dmPFC (blue) used to extract effect sizes. Data are plotted as box plots for each condition in which horizontal lines indicate median

values, boxes indicate 25–75% interquartile range and whiskers indicate minimum and maximum values; data points outside 1.5x the interquartile range

are shown separately as crosses. * indicates p<0.05, *** indicates p<0.005, all p>0.05 are explicitly stated. Significance was determined by comparison

with either Wilcoxon signed rank or Friedman tests. N = 20 participants for intertemporal choice, N = 21 participants for risky choice.

DOI: https://doi.org/10.7554/eLife.44939.009

The following source data and figure supplements are available for figure 3:

Source data 1. Relative subjective value (RSV) GLM for Self and Other trials in the intertemporal and risky choice paradigms.

DOI: https://doi.org/10.7554/eLife.44939.013

Source data 2. GLM analysis of offline subjective value recapitulating the methods of Nicolle et al. (2012) in the intertemporal choice task.

DOI: https://doi.org/10.7554/eLife.44939.014

Figure supplement 1. Negative correlation with relative subjective value in Other over Self trials does not yield overlapping clusters between

paradigms.

DOI: https://doi.org/10.7554/eLife.44939.010

Figure supplement 2. When recapitulating the methods of Nicolle et al. (2012), evidence is found for representation of offline subjective value in the

posterior dorsomedial prefrontal cortex (dmPFC) in the intertemporal choice task.

DOI: https://doi.org/10.7554/eLife.44939.011

Figure supplement 3. The absolute value of the chosen option is uncorrelated with activity in either the ventromedial prefrontal cortex (vmPFC) or

dorsomedial prefrontal cortex (dmPFC).

DOI: https://doi.org/10.7554/eLife.44939.012
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together (Figure 3—figure supplement 2; Figure 3—source data 2; Self and Other trial coordi-

nates [10 10 52], zpeak = 5.84; whole brain FWE threshold at p<0.05, height threshold of p<0.001).

Although this cluster was noted to be more posteriorly located than the cluster found in the original

study (Nicolle et al., 2012), these results could be viewed as a replication of previous work.

Finally, we completed an ROI analysis for the vmPFC and dmPFC with the absolute subjective

value of the chosen option. Notably, this analysis considered only the option chosen by participants

on each trial without subtraction of the unchosen option. Neither ROI indicated any significant rela-

tionships (all p>0.05, Wilcoxon signed rank test), and all effects were observed to be significantly

lower compared to relative subjective value effects when directly compared (Figure 3—figure sup-

plement 3; intertemporal vmPFC �
2 = 8.01, p=0.005, intertemporal dmPFC �

2 = 12.52, p<0.001,

risk vmPFC �
2 = 16.16, p<0.001, risk dmPFC �

2 = 40.10, p<0.001, Friedman test), indicating that

medial prefrontal cortex activity in our paradigm was influenced by the relative comparison between

the value of two options but not by the value of the chosen option itself.

Activity in the dmPFC uniquely encodes relative subjective value for
self and other
We utilized MVPA to determine whether vmPFC or dmPFC activity detectably encodes high versus

low relative subjective value trials for self and other. Spherical ROIs (8 mm) for the vmPFC and

dmPFC were based on previous studies (Venkatraman et al., 2009a; Venkatraman et al., 2009b;

Clithero and Rangel, 2014), and one intermediate ROI (imPFC) was placed between the vmPFC

and dmPFC in the medial prefrontal cortex (Figure 4—source data 1). Notably, classifiers trained

using dmPFC activity were able to predict high versus low relative subjective value compared to an

empirically derived null distribution, and this effect held over Self and Other trials and across para-

digms (Figure 4; Figure 4—source data 2; all p<0.01 for dmPFC ROI for Self and Other trials from

both paradigms, permutation test). The other ROIs tested failed to detectably encode relative sub-

jective value in all cases (Figure 4; Figure 4—source data 2; all p>0.08, permutation test), with the

exception of the imPFC in Self trials from the risky choice paradigm (Figure 4b; Figure 4—source

data 2; p=0.031, permutation test). In the intertemporal paradigm, we were also able to test the

classifier performance for the offline agent. Classifiers trained on activity in the dmPFC did not reach

significance in decoding offline relative subjective value (Self trials p=0.107, Other trials p=0.057,

permutation test), and there was a trend for higher accuracy for online relative to offline analyses

when directly compared (Figure 4—figure supplement 1; �2 = 2.65, p=0.104, Friedman test). While

these results generally correspond to our univariate results, further work is needed to conclusively

confirm the presence or absence of offline value signals in the dmPFC at the multivariate level.

Together, these findings support the notion that the dmPFC is uniquely important in calculating rela-

tive subjective value across self and other compared to the other medial prefrontal structures

examined.

We repeated these analyses for the vmPFC and dmPFC ROIs to determine whether activity in

either area contained information related to the absolute subjective value of the chosen option in

each trial. Corresponding to our univariate results, neither vmPFC nor dmPFC activity detectably

encoded the value of the chosen option (all p>0.2 for both ROIs, permutation test), and classifiers

trained using dmPFC activity were consistently able to decode relative subjective value more accu-

rately when directly compared, with the exception of a strong trend for Other trials in the intertem-

poral choice task (Figure 4—figure supplement 2; Other trials intertemporal p=0.064, all other

p<0.05, Wilcoxon signed rank test). Therefore, dmPFC activity contained information about the rela-

tive subjective valuation between options but not about the subjective value of the chosen option

itself. To further confirm the ability of dmPFC activity to encode online relative subjective value, we

used a dmPFC ROI derived from anatomical connectivity (Neubert et al., 2015) and observed that

activity in the additional ROI detectably encoded relative subjective value (Figure 4—figure supple-

ment 3; all p<0.005 for dmPFC ROI for Self and Other trials from both paradigms, permutation

test), indicating that the effects we observed in the dmPFC were robust across different methods of

ROI generation.
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Figure 4. Activity in the dorsomedial prefrontal cortex (dmPFC) encodes relative subjective value for self and other. (a,b) Decoding accuracy of pattern

classifiers trained on Self (left) and Other (right) trials in the intertemporal (top) and risky (bottom) choice paradigms for primary somatosensory cortex

(S1), ventromedial prefrontal cortex (vmPFC), dmPFC, and an intermediate ROI (imPFC) placed between the vmPFC and dmPFC. Insets show

anatomical location of 8 mm spherical ROIs. Plots indicate the full distribution of data using a kernel density estimation with a bandwidth of 0.025

applied to all plots. The orange horizontal line indicates the median of a distribution, the black horizontal line indicates the mean of a distribution, and

the black dot indicates the mean of the corresponding empirically derived null distribution. * indicates p<0.05, ** indicates p<0.01, *** indicates

p<0.005, permutation test. N = 20 participants for intertemporal choice, N = 21 participants for risky choice.

DOI: https://doi.org/10.7554/eLife.44939.015

The following source data and figure supplements are available for figure 4:

Source data 1. ROIs generated for multivariate analyses.

DOI: https://doi.org/10.7554/eLife.44939.019

Source data 2. MVPA significance for online relative subjective value analyses.

DOI: https://doi.org/10.7554/eLife.44939.020

Figure supplement 1. Dorsomedial prefrontal cortex (dmPFC) activity encodes online, but not offline, relative subjective value in the intertemporal

choice task.

DOI: https://doi.org/10.7554/eLife.44939.016

Figure supplement 2. Dorsomedial prefrontal cortex (dmPFC) activity encodes relative subjective value, but not the absolute subjective value of the

chosen option.

DOI: https://doi.org/10.7554/eLife.44939.017

Figure supplement 3. Activity in the anatomically defined dorsomedial prefrontal cortex (dmPFC) encodes relative subjective value.

DOI: https://doi.org/10.7554/eLife.44939.018

Piva et al. eLife 2019;8:e44939. DOI: https://doi.org/10.7554/eLife.44939 10 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.44939.015
https://doi.org/10.7554/eLife.44939.019
https://doi.org/10.7554/eLife.44939.020
https://doi.org/10.7554/eLife.44939.016
https://doi.org/10.7554/eLife.44939.017
https://doi.org/10.7554/eLife.44939.018
https://doi.org/10.7554/eLife.44939


The code for relative subjective value in the dmPFC generalizes over
agents and contexts
In order to determine the similarity in the code for relative subjective value in the dmPFC for Self

and Other trials, we trained pattern classifiers to decode relative subjective value from dmPFC data

from Self trials and tested them on data from Other trials, and vice versa. The code for relative sub-

jective value retained information over Self and Other trials in each paradigm, as cross-decoding

accuracy was above the empirically derived null distribution for all comparisons (Figure 5a,c; Fig-

ure 5—source data 1; all p<0.05 for training on Self and testing on Other and vice versa for both

paradigms, permutation test).

Moreover, we also tested whether the code for relative subjective value in the dmPFC could be

generalized across the two behavioral paradigms. For this analysis, we examined a subset of partici-

pants (N = 10) who participated in both the intertemporal and risky choice fMRI sessions on separate

days. We trained pattern classifiers to decode high versus low relative subjective value on either Self

or Other trials from the intertemporal choice paradigm and then tested these classifiers on either

the Self or Other trials from the risky choice paradigm, and vice versa. Indicating that the code for

relative subjective value in the dmPFC was able to generalize across contexts, pattern classifiers

trained on either Self or Other trials in the intertemporal paradigm were able to decode relative sub-

jective value in either Self or Other trials in the risky paradigm (Figure 5b; Figure 5—source data 1;

train Self intertemporal test Self risk p=0.055, all other p<0.05, permutation test). Correspondingly,

pattern classifiers trained on either Self or Other trials in the risk paradigm were likewise able to

decode relative subjective value in either Self or Other trials in the intertemporal paradigm

(Figure 5d; Figure 5—source data 1; all p<0.05, permutation test). The ability of pattern classifiers

to cross-decode relative subjective value similarly for Self and Other trials regardless of being trained

on either Self or Other trials in the two distinct behavioral paradigms further underscores the reten-

tion of information in dmPFC activity across interpersonal reference frames and decision-making

contexts.

Encoding of relative subjective value in the dmPFC during Other trials
reflects social attitudes
Our results so far demonstrate that the ability of classifiers trained using dmPFC activity to decode

relative subjective value is consistent between Self and Other trials in both paradigms. We next

determined whether the fidelity of dmPFC activity in encoding relative subjective value in Other

compared to Self trials reflects task-independent self-reported social attitudes. Participants com-

pleted questionnaires relating to altruism, empathy, autism quotient, psychopathy, and social pho-

bia. In order to collapse these metrics into a single behavioral score, we performed a principal

component analysis and calculated the score of the first principal component for each participant.

This component explained 44.8% of variance and loaded positively onto psychopathy, negatively

onto altruism and empathy, and neutrally onto remaining measures (Figure 6a). These results indi-

cated that this first principal component was primarily a measure associated with antisocial attitudes.

To determine the relationship between this measure and agent cross-decoding of relative subjec-

tive value across Self and Other trials, we averaged encoding of value when training on Self trials

and testing on Other trials, and vice versa, in either the vmPFC or dmPFC. For participants who com-

pleted both the intertemporal and risky choice tasks, agent cross-decoding accuracy was averaged

across both sessions for initial analyses. In hypothesizing the direction of such a correlation, there

are two distinct possibilities. The first is that cross-decoding accuracy may negatively correlate with

antisocial attitudes, indicating that high cross-decoding accuracy, and thus similar value coding

across self and other, is associated with prosocial attitudes. Alternatively, cross-decoding accuracy

may positively correlate with antisocial attitudes, indicating that low cross-decoding accuracy, and

thus more differentiated value coding across self and other, is associated with prosocial attitudes.

The latter possibility emphasizes that an ability to differentiate value coding across self and other is

critical for expressing preference toward another individual’s benefit, akin to the importance of men-

talizing about others’ preferences.

There was no correlation observed between agent cross-decoding accuracy in the vmPFC and

our antisocial personality measure (Figure 6b; r = �0.08, p=0.895, Spearman correlation). By con-

trast, there was a positive correlation observed in the dmPFC (Figure 6c; r = 0.40, p=0.025,
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Figure 5. The code for relative subjective value in the dorsomedial prefrontal cortex (dmPFC) retains information over agents and contexts. (a,c)

Agency generalizability. Decoding accuracy of pattern classifiers trained on dmPFC data from Self trials and tested on dmPFC data from Self or Other

trials as well as pattern classifiers trained on dmPFC data from Other trials and tested on dmPFC data from Self or Other trials for both the

intertemporal (top) and risky (bottom) choice paradigms. (b,d) Paradigm generalizability. Decoding accuracy of pattern classifiers trained on dmPFC

data from Self or Other trials in the intertemporal choice (IC) task and tested on dmPFC data from Self or Other trials in the risky choice (RI) task (top) or

tested on data from the RI task and tested on data from the IC task (bottom). Plots indicate the full distribution of data using a kernel density

estimation with a bandwidth of 0.025 applied to all plots. The orange horizontal line indicates the median of a distribution, the black horizontal line

indicates the mean of a distribution, and the black dot indicates the mean of the corresponding empirically derived null distribution. Inset shows

anatomical location of the 8 mm spherical dmPFC ROI. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.005, all p>0.05 are explicitly stated,

permutation test. N = 20 participants for intertemporal choice, N = 21 participants for risky choice, N = 10 for (c) and (d) in which data were trained on

intertemporal and tested on risk, and vice versa.

DOI: https://doi.org/10.7554/eLife.44939.021

The following source data is available for figure 5:

Source data 1. MVPA significance for online relative subjective value analyses across agents and tasks.

DOI: https://doi.org/10.7554/eLife.44939.022
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Figure 6. Agent cross-decoding of relative subjective value classifiers trained on dorsomedial prefrontal cortex (dmPFC) activity correlates with social

attitudes. (a) Component coefficients of the first principal component score across self-reported measures for altruism (Alt), empathy quotient (EQ),

autism quotient (AQ), psychopathy (Psych), and social phobia (SP). (b,c) Correlation between the first principal component score and the agent cross-

decoding accuracy of relative subjective value of classifiers trained on data from a given ROI. For participants who completed both intertemporal and

risky choice sessions, cross-decoding accuracy was averaged. Higher principal component scores indicate higher antisocial attitudes. Higher cross-

decoding accuracy indicates that participants’ value codes for Self and Other trials were less differentiated. The ventromedial prefrontal cortex (vmPFC;

b) did not yield a significant correlation, noted by the dotted trend line. However, the dmPFC (c) yielded a significant correlation, noted by the solid

line (r = 0.403, p=0.025, Spearman’s correlation with significance verified via permutation test). Inset shows the anatomical location of the 8 mm

spherical ROIs for the vmPFC (yellow) and dmPFC (blue). N = 31 participants for all correlations.

DOI: https://doi.org/10.7554/eLife.44939.023

The following figure supplements are available for figure 6:

Figure 6 continued on next page
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Spearman correlation; p<0.05 confirmed via permutation test), indicating that participants with

greater agent cross-decoding in the dmPFC had higher measures of antisocial attitudes. To confirm

this relationship, we examined the correlation between social attitude scores and the individual accu-

racy when training on Self trials and testing on Other trials, and vice versa, in the vmPFC and

dmPFC. Again, no correlation was observed in the vmPFC for either analysis (Figure 6—figure sup-

plement 1a; train Self test Other r = 0.03, p=0.880, train Other test Self r = �0.08, p=0.653, Spear-

man correlation). Examination of the dmPFC yielded either a significant or strong trend toward a

positive correlation (Figure 6—figure supplement 1b; train Self test Other r = 0.453, p=0.011, train

Other test Self r = 0.341, p=0.061, Spearman correlation), confirming the cross-decoding relation-

ship observed in the dmPFC but not in the vmPFC. We further performed this analysis separately on

data from the intertemporal and risky choice tasks. As in other analyses, no correlation was observed

in the vmPFC for either paradigm (Figure 6—figure supplement 2a; intertemporal r = �0.147,

p=0.537, risk r = �0.040, p=0.862, Spearman correlation). However, even with diminished statistical

power from reduced sample size, we still observed a trend toward a positive correlation in both

tasks in the dmPFC (Figure 6—figure supplement 2b; intertemporal r = 0.415, p=0.070, risk

r = 0.423, p=0.056, Spearman correlation). These results indicate that the observed relationship was

not driven by the similarity or dissimilarity of the other participant or by specific task demands. As

mentioned above, since agent cross-decoding is primarily a measure of how similar value coding is

for Self and Other trials in the dmPFC, these results indicate that participants who report more anti-

social attitudes tend to have value coding that is less differentiated when making decisions for them-

selves as opposed to other individuals in our experimental paradigms.

Discussion
While making decisions for others is vital in daily life, previous studies examining the neural corre-

lates of subjective value during decision-making for others have yielded mixed and sometimes con-

flicting results. These divergent findings could be the result of utilizing tasks with different

associated cognitive demands and behavioral models. To address this issue, we utilized two para-

digms, intertemporal and risky choice, as well as two different variations of other, those that had

similar versus dissimilar preferences to each participant. When using relative subjective value,

defined as the subjective value of the chosen minus unchosen option, as a behavioral regressor,

both univariate and multivariate analytic techniques yielded remarkably consistent results across

decision-making for self and other as well as across intertemporal and risky choice paradigms. In all

univariate cases, the vmPFC positively correlated with relative subjective value, while the dmPFC

negatively correlated with relative subjective value. When taking a multivariate approach, the

dmPFC, but not other medial prefrontal areas, contained detectable information concerning the rel-

ative subjective value of each trial. These results were consistent across self and other, and the code

for relative subjective value retained information across self and other as well as across behavioral

paradigms. Finally, a relationship between self-reported social attitudes and agent cross-decoding

accuracy was observed. These results are particularly novel in that they for the first time demonstrate

the ability of a brain region to compute subjective value across decision-making for self and other

using a neural code that retains information across social referenced frames. Furthermore, our results

extend the idea of a shared representation for value in the medial prefrontal cortex by indicating

that this code in the dmPFC is generalizable across qualitatively different behavioral paradigms that

divergently conceptualize subjective value.

Figure 6 continued

Figure supplement 1. Social attitudes correlate with cross-decoding accuracy for both training on Self trials and testing on Other trials, and vice versa,

in the dorsomedial prefrontal cortex (dmPFC).

DOI: https://doi.org/10.7554/eLife.44939.024

Figure supplement 2. Agent cross-decoding of relative subjective value classifiers trained on dorsomedial prefrontal cortex (dmPFC) activity correlates

with social attitudes separately for both the intertemporal and risky choice tasks.

DOI: https://doi.org/10.7554/eLife.44939.025
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The similarity of subjective value representation across self and other
Our results are distinguished from many of those reported in previous studies by the level of similar-

ity in subjective value coding across decision-making for self and other. There exists evidence for

varying gradients in the medial prefrontal cortex, typically extending from ventral to more dorsal

areas. Traditional thinking has implicated the vmPFC in self-referenced subjective valuation

(Kable and Glimcher, 2007; Levy et al., 2010; McClure et al., 2004; Behrens et al., 2008;

Boorman et al., 2009; Knutson et al., 2005), while the more dorsal areas of medial prefrontal cor-

tex, typically referred to as the dmPFC – a functionally defined region that is overlapping with or

proximal to anatomically defined areas such as the pre-SMA and dACC – are implicated more in

social cognition (Behrens et al., 2008; Frith and Frith, 2006; Hampton et al., 2008). Correspond-

ing to these findings, a recent approach using a prosocial learning framework has indicated a ventral

to dorsal gradient in medial prefrontal cortex, with self value represented ventrally and other value

represented dorsally (Sul et al., 2015). In our study, a cluster located in the anterior dmPFC was

observed in a value-agnostic contrast of Other over Self trials in the intertemporal choice paradigm

(Figure 2), and a cluster located more dorsally, anatomically proximal to the dACC and pre-SMA,

was observed to more strongly signal other-referenced relative subjective value, although this effect

was limited to the intertemporal choice paradigm (Figure 3—figure supplement 1).

Indeed, determining the functional specificity of the dorsal regions of medial prefrontal cortex in

social cognition continues to be an active area of research. For example, a study using a reinforce-

ment-learning task for self, other, or no one did not find evidence for any dorsal region of the medial

prefrontal cortex in other-referenced choice, but instead found that the subgenual ACC corre-

sponded to prediction errors specifically during learning for others and that the size of this effect

was related to self-reported empathy scores (Lockwood et al., 2016). Additionally, the rostral ACC

has been implicated in belief-based prediction errors during a competitive task (Zhu et al., 2012).

Furthermore, the ACC gyrus subregion has been found across multiple studies to be vital in social

cognition, signaling other-related information and motivation (Apps et al., 2016). In monkey studies

utilizing single-unit recordings, the functionally defined dmPFC has been repeatedly implicated in

social reward signaling (Haroush and Williams, 2015; Noritake et al., 2018). In our study, a region

located within the dmPFC, particularly proximal to the dACC, signaled relative subjective value not

only during Other trials, but also during Self trials, and it did so consistently across univariate and

multivariate analyses as well as across tasks requiring different cognitive demands.

Notably, these results are in imperfect correspondence to an earlier paper which reported the

vmPFC to be important in online subjective valuation and the dmPFC to be important in offline sub-

jective valuation (Nicolle et al., 2012). While our paradigm is similar to the one used in this previous

study, it is important to note that our univariate analyses were structured differently. When our anal-

yses were structured as closely as possible to those detailed in the previous report (Nicolle et al.,

2012), we were able to demonstrate a cluster in the posterior dmPFC that represented offline sub-

jective value (Figure 3—figure supplement 2), roughly corresponding to previously reported find-

ings. Additionally, while we were not able to definitively demonstrate encoding for offline relative

subjective value in the dmPFC at the multivariate level, we did detect trends toward significant

encoding of offline relative subjective value for both Self and Other trials (Figure 4—figure supple-

ment 1; Self trials offline p=0.107, Other trials offline p=0.057, permutation test), lending support

for conducting future research to more conclusively examine offline subjective value coding in the

dmPFC at the multivariate level. Thus, while more research is, nevertheless, needed to fully consoli-

date earlier findings that indicate potential functional gradients in the medial prefrontal cortex

(Nicolle et al., 2012; Sul et al., 2015), the current results reinforce the general notion that the

dmPFC partakes in social cognition through distinct value-related computations.

Activity patterns in the vmPFC and their role in signaling relative
subjective value
Our results indicated that vmPFC activity corresponded more to relative subjective value than to the

absolute value of the chosen option. This contradicts the notion detailed in some studies that vmPFC

activity corresponds to the perceived value of the chosen option (Wunderlich et al., 2010;

Hare et al., 2009). However, many other studies have indicated that activity in the medial prefrontal

cortex corresponds more specifically to differences in subjective value between options
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(Nicolle et al., 2012; Boorman et al., 2009; FitzGerald et al., 2009; Lim et al., 2011;

Grabenhorst and Rolls, 2009; Hare et al., 2011; Tremblay and Schultz, 1999), consistent with our

observed results.

Perhaps, more striking was the inability of classifiers trained using vmPFC activity to pass the

decoding criterion of neural representation for relative subjective value when applying multivariate

analysis techniques. Our results indicated that while the vmPFC signaled relative subjective value

when voxels were treated as a homogenous group, the pattern of voxel activity within this region

did not contain enough information to exceed an empirically derived null distribution (Figure 4).

Indeed, multivariate approaches in conjunction with decision-making paradigms have not been used

frequently. One previous study using MVPA in the frontal cortex to study the representation of value

across reward categories found evidence for both category-dependent and category-independent

value coding in varying subregions of the vmPFC (McNamee et al., 2013). More recently, represen-

tational similarity analysis (RSA), another multivariate analysis technique, was used to demonstrate

that the vmPFC contained information regarding value univariately and information regarding cate-

gory multivariately (Zhang et al., 2017), largely consistent with our results. Together, these findings

indicate the importance of comparing univariate and multivariate activation patterns in decision-

making paradigms to continue to explore the way by which the vmPFC and other frequently studied

areas represent the neural correlates of value.

The role of the dmPFC in computing relative subjective value
The role of the dmPFC and more specifically the anatomically proximal dACC subregion in value-

based decision-making has been a point of contention (Ebitz and Hayden, 2016). Historically, the

dmPFC and dACC have been thought to have a role not only in value comparison (Kolling et al.,

2016; Hare et al., 2011; Boorman et al., 2013) but also in decision conflict (Botvinick et al., 1999).

More recently, these opposing views for the role of the dmPFC and dACC have crystalized into two

camps, one of which advocates for the importance of these regions in computing value across

changing environments (Kolling et al., 2016; Kolling et al., 2012) while the other advocates for the

importance of these regions in computing the expected value of control (Shenhav et al., 2016;

Shenhav et al., 2014).

Our findings contribute to this argument by providing evidence for a specialized role of the

dmPFC in common value representation across self and other. Specifically, our multivariate findings

greatly add to our knowledge of dmPFC function. First, the dmPFC was the only of several medial

prefrontal ROIs to decode relative subjective value, underscoring its importance in decision-making.

Furthermore, our findings have essential implications for the common-currency hypothesis, which

postulates that the brain continuously calculates value across varying categories and contexts to

facilitate value comparison (Levy and Glimcher, 2012; Bartra et al., 2013). This hypothesis has

mainly been attributed to vmPFC activity, as studies have shown overlapping value representation

between categories in the vmPFC (FitzGerald et al., 2009; Izuma et al., 2008; Chib et al., 2009;

Levy and Glimcher, 2011; Sescousse et al., 2015) as well as the ability of vmPFC activity patterns

to generalize information regarding value across categories (McNamee et al., 2013; Zhang et al.,

2017; Gross et al., 2014). Our vmPFC findings partially correspond to the previous literature, as our

univariate analyses indicated an overlap not only between Self and Other trials, but also across tasks

that involve different cognitive demands. However, our findings regarding the dmPFC extend the

common-currency hypothesis to include other brain regions. Not only was there overlap in activity in

the dmPFC related to relative subjective value across Self and Other trials and across behavioral

paradigms, but our results also demonstrated that the neural code in the dmPFC that represents rel-

ative subjective value was able to retain information across both self and other, across univariate and

multivariate levels of representation, and even across behavioral paradigms. These findings extend

the reach of the common-currency hypothesis to include the dmPFC and its potential role in value

comparison, using a code that computes subjective value information across agent and context

differences.

Interestingly, the correlation that we observed with self-reported social attitudes indicated that

this ability of the dmPFC to retain value information in its neural code across Self and Other trials

may not be associated with prosocial attitudes, as one might expect. Instead, the opposite appears

to be true, as increased agent cross-decoding accuracy was positively correlated with antisocial atti-

tudes in our study (Figure 6). This indicates that a neural code in the dmPFC that is more separable
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when making decisions for self versus other is associated with prosocial traits. While our sample size

limited our ability to conclusively demonstrate this relationship, our findings raise the intriguing pos-

sibility that a neural code that makes individual-specific predications about self and other, perhaps

by treating another individual as an independent agent, may underlie cognitive processes that result

from an interactive process between prosocial preference and mentalizing about others.

That said, the tasks that we employed in our current study could not conclusively determine

whether activity in the dmPFC signals subjective value or the expected value of control, nor were

they designed to do so. When relative subjective value is low and dmPFC activity is heightened, this

could have to do either with the intrinsic comparison of the value of the two options or with the

amount of control necessary to make an accurate decision based on a given set of preferences. The

fact that our dmPFC results could not be explained by response times suggests that our observed

effects were not driven solely by trial difficulty. Yet, we do not believe that this finding is enough to

invalidate the expected value of control hypothesis, especially when considering that the delay

period of 5 s associated with each trial could decrease the extent of response time modulation by

trial parameters. As such, the primary limitation of our study is that we are unable to conclusively dif-

ferentiate between these opposing viewpoints.

Conclusion
Both the vmPFC and dmPFC are components of broader networks that compute reward-related

information across social and non-social contexts (Fareri and Delgado, 2014; Smith et al., 2014).

Our study indicates that the code for relative subjective value in the dmPFC is robustly generalizable

across various cognitive demands and social contexts in a way that is demonstrably related to social

attitudes. This is in line with the common-currency hypothesis (Levy and Glimcher, 2012;

Bartra et al., 2013) and other proposed theories suggesting how information may be retained

across self and other (Chang, 2013). Our findings additionally argue for uniquely robust representa-

tion of relative subjective value in the dmPFC compared to other medial prefrontal regions.

Together, these findings present the dmPFC as a nexus in computing variables relating to value-

based decision-making, regardless of analytic technique used and across divergent tasks and social

reference frames.

Materials and methods

Participants
Thirty participants provided written informed consent to take part in a study that took place over

one to three sessions. The first session consisted only of a behavioral study using the intertemporal

choice paradigm, while the second and third sessions consisted of an fMRI study using the intertem-

poral choice paradigm (Figure 1a) and risky choice paradigm (Figure 1d), respectively. Prior to the

third session, participants completed a behavioral task online to gauge their self-referenced risk

preferences. Nine of the 30 participants only attended the first session, 11 attended only the first

and second sessions, and 10 attended all three sessions. Thirteen additional participants provided

written informed consent and attended only the third session. All 30 initial participants were

included in the analysis of preliminary intertemporal choice behavioral data from the first session (19

female, mean age 28.8, s.d. = 7.8). A total of 20 participants were included in behavioral and neural

analyses of intertemporal choice acquired during the first fMRI session (15 female, mean age 29.1, s.

d. = 8.7). Additionally, a total of 21 participants were included in behavioral and neural analyses of

risk acquired during the second fMRI session (13 female, mean age 31.3, s.d. = 7.7). We based our

individual sample sizes for both the intertemporal and risky choice tasks on previously published

fMRI studies that utilized univariate (Apps and Ramnani, 2017) or multivariate (McNamee et al.,

2013) analytical methods to explore the representation of subjective value. For the intertemporal

choice dataset, one participant was excluded from further analyses due to excessive movement. For

the risky choice dataset, one participant was excluded from further analyses due to excessive move-

ment, and one participant was excluded from further analyses for failing to meet accuracy criterion

in the task for learning the preferences of the other individual. All participants were between 18 and

55 years of age. Sex differences were not examined in this study due to a lack of the statistical

power necessary to do so. The study was approved by the Yale School of Medicine Human
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Investigation Committee (HIC #0910005795). All participants gave their informed consent prior to

the experimental session and were paid for their participation.

Stimuli and participant payment
All experiments were programmed in Matlab 2014a (MathWorks) using Psychtoolbox (version

3.0.12). For preliminary behavioral sessions and learning sessions, the task was presented on a com-

puter monitor in a private behavioral testing room. Participants indicated their choices through but-

ton presses to a keyboard. For the preliminary intertemporal choice task, participants indicated their

choice by releasing or continuing to hold a key. For the learning sessions, participants indicated their

choice by pressing either a left or right key. For fMRI sessions, the task was projected to a screen at

the back of the scanner, with a mirror used to allow participants to see the screen. Participants indi-

cated their choices through left or right button presses to an MRI-safe button box in their right

hand. Randomly selected trials for the purpose of payment were determined by rolling dice at the

end of each experimental session. Funds were transferred to all participants using a web application

called Square Cash in order to allow participants to be paid at the actual delays chosen in the inter-

temporal choice paradigm.

Social intertemporal choice preliminary behavioral session
A preliminary behavioral session preceded the scanning session of the intertemporal choice task to

evaluate the participants’ baseline intertemporal preferences. In each trial, participants were

required to choose between a delayed amount option in comparison to a common baseline offer of

$10 immediately. Delays ranged from 1 to 180 days, while delayed amount options involved various

amounts greater than $10 up to a maximum of $40. Participants made choices both for themselves

(‘Self’ trials) and for another participant in the study (‘Other’ trials). For this behavioral session, par-

ticipants were given no additional information about this other individual. One trial at random was

selected from each of the participant’s own Self trials and another participant’s Other trials to con-

tribute to the participant’s payment. Trial types with every possible combination of delay and

amount for both Self and Other constituted 84 trials, and every trial was repeated four times for a

total of 336 trials. Task timing included a 1 s start screen, a 2 s presentation of the delayed option, a

2 s delay period, a 2 s choice period, and a 1 s confirmed choice period, followed by a 1–3 s inter-

trial interval. Task completion lasted approximately 60 min. Participants were paid a baseline amount

of $10, plus added funds depending on their choice during one randomly determined Self trial as

well as another participant’s choice during one randomly determined Other trial. Funds were trans-

ferred to participants at the actual delay chosen during the experiment.

Social intertemporal choice fMRI session
Learning task. Just prior to scanning, participants completed a learning task that allowed them to

learn the preferences of another participant in the study for which they would be making choices.

For this session, participants were matched with another individual with differing preferences, such

that high-discounters were paired with low-discounters, and vice versa, so that self and other were

dissimilar with respect to discounting preferences. Trial types were generated from a set of simula-

tions and were unique to each individual participant. These trials were selected such that on at least

50% of trials each participant would prefer a different option than the individual whose preferences

they were learning, as determined by each participant’s preferences calculated from their choices in

the preliminary behavioral session. For this task, participants had to indicate which of two options

they thought the other individual in the study would choose. They were then shown the choice that

the other individual would make on that particular trial and thus had the opportunity to iteratively

learn the other individual’s preferences. Delays ranged from 1 up to 180 days, with monetary

amounts ranging from $0.01 up to $40. Each trial involved either a smaller amount of money sooner

or a larger amount of money later. The task consisted of 80 trials completed over two blocks of 40

trials each. Task timing included a 2 s presentation of the options, a 3 s period in which the options

remained on the screen and an arrow indicated the choice of the participant, a 2 s period in which

the participant was able to view the choice of the other individual, and a 1 s inter-trial interval. Task

completion lasted approximately 12 min. Accuracy was evaluated following the task, with a criterion
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of 80% accuracy to be included in the analyzed dataset. No trials in the learning task directly

impacted the payout of either the participant or the other individual.

fMRI task. This task involved participants making choices both for themselves and for the other

participant whose preferences they just determined in the learning task and took place in the fMRI

scanner. Trial types were generated uniquely for each participant such that the absolute difference

between the subjective value of the two presented options, used to quantify relative subjective

value, was uncorrelated between each participant and the other individual. These calculations were

completed based on each participant’s behavior during the preliminary behavioral session. Similar to

the learning task, each trial involved an option of a smaller amount of money sooner or a larger

amount of money later. Delays again ranged from 1 up to 180 days, and monetary amounts ranged

from $0.01 up to $40. Participants were asked to either make choices for themselves during Self tri-

als or the other individual during Other trials in alternating blocks. Importantly, participants were not

explicitly asked to follow the other individual’s preferences on Other trials, but simply told to make

choices for that person howeverthey wished. The task consisted of 8 blocks of 30 trials each, with 15

of these being Self trials and 15 of these being Other trials counterbalanced for order. Participants

therefore completed 240 trials in total, consisting of 120 Self trials and 120 Other trials. Each block

also started with a dummy trial that was discarded in future analyses. Each Self or Other block began

with an indication of the block type for 3 s. Task timing included a 5 s presentation of the options, a

2 s period in which the options remained on the screen and the participant was free to make their

choice, a 2 s period in which the participant was able to view their choice, and a 3–7 s inter-trial

interval (Figure 1a). Task completion lasted approximately 60 min. Participants were paid a baseline

amount of $30 plus added funds depending on their choice during one randomly determined Self

trial as well as another participant’s choice during one randomly determined Other trial, with the

decisions of high-discounters matched to those of low-discounters, and vice versa. Funds were trans-

ferred to participants at the actual delay chosen during the experiment.

Social risky choice fMRI session
Preliminary online choice task. Unlike in the intertemporal choice paradigm, participant preferences

were initially evaluated via a behavioral task administered online instead of with an in-person testing

session. This task was delivered via Qualtrics prior to the learning and fMRI risky choice tasks. It con-

sisted of 30 trials in which participants were asked to choose between a baseline option of a 50%

chance of earning $5 or an alternative option with probabilities ranging from 13% up to 38% and

monetary options ranging from $5 up to $65. All questions only asked participants about what they

would prefer for themselves. To incentivize participants to answer accurately based on their prefer-

ences, one trial was randomly chosen at the conclusion of the fMRI session to be played out and

contributed to total earnings.

Learning task. Similar to the intertemporal choice paradigm, participants completed a learning

task just prior to scanning that allowed them to learn the preferences of another participant in the

study for which they would be making choices. For this session, participants were matched with a fic-

tional individual that had the same risk preferences that they had indicated in the preliminary online

task. Participants were told that this was another actual participant in the study and were debriefed

on the nature of this deception at the end of the session. Trial types were generated from a set of

simulations and were unique to each individual participant. These trials were selected such that on

approximately 50% of trials the fictional other individual would choose the riskier option, as deter-

mined by each participant’s preferences calculated from their choices in the preliminary online task.

For the learning task, participants had to indicate which of two options they thought the other indi-

vidual in the study would choose, again similar to the intertemporal choice task. They were then

shown the choice that the other individual would make on that particular trial and thus had the

opportunity to iteratively learn these preferences. Probabilities of earning the monetary reward

ranged from 20% up to 60%, with monetary amounts ranging from $0.01 up to $40. Each trial

involved either a smaller amount of money with a larger probability or a larger amount of money

with a smaller probability. The task consisted of 80 trials completed over two blocks of 40 trials

each. Task timing included a 2 s presentation of the options, a 3 s period in which the options

remained on the screen and an arrow indicated the choice of the participant, a 2 s period in which

the participant was able to view the choice of the other individual, and a 1 s inter-trial interval. Task

completion lasted approximately 12 min. Accuracy was evaluated following the task, with a criterion
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of 80% accuracy to be included in the analyzed dataset. No trials in the learning task directly

impacted the payout of either the participant or any other individual in the study.

fMRI task. Similar to the intertemporal choice task, the risky choice task involved participants mak-

ing choices both for themselves and for the other participant whose preferences they just learned in

the learning task and took place in the fMRI scanner. However, as mentioned above, the other par-

ticipant in this task was fictional and was in fact based on the participant’s own preferences as

reported in the preliminary online task. Trial types were generated uniquely for each participant such

that each participant would choose the riskier option on approximately 50% of trials. Again, these

calculations were completed based on each participant’s answers to the preliminary questionnaire.

Similar to the learning task, each trial involved an option of a smaller amount of money with a larger

probability or a larger amount of money with a smaller probability. Probabilities of earning the mon-

etary reward again ranged from 20% up to 60%, and monetary amounts ranged from $0.01 up to

$40. Participants were asked to either make choices for themselves during Self trials or the fictional

other individual during Other trials in alternating blocks. Importantly, participants were not explicitly

asked to follow the other individual’s preferences on Other trials, but simply told to make choices

for that person however they wished. The task consisted of 8 blocks of 30 trials each, with 15 of

these being Self trials and 15 of these being Other trials counterbalanced for order. Participants

therefore completed 240 trials in total, consisting of 120 Self trials and 120 Other trials. Each block

also started with a dummy trial that was discarded in future analyses. Each Self or Other block began

with an indication of the block type for 3 s. Task timing included a 5 s presentation of the options, a

2 s period in which the options remained on the screen and the participant was free to make their

choice, a 2 s period in which the participant was able to view their choice, and a 3–7 s inter-trial

interval (Figure 1d). Task completion lasted approximately 60 min. Participants were paid a baseline

amount of $40, plus added funds depending on their choice during one randomly determined Self

trial as well as one randomly determined Other trial. As mentioned above, one randomly determined

choice in the preliminary online task was also chosen to potentially contribute to earnings. All

selected options were then played out, such that participants had the stated chance at winning the

amount of money indicated in the chosen option. Funds were transferred to participants immedi-

ately following the conclusion of the fMRI session, and participants were debriefed concerning any

deception that occurred during the study.

Acquisition of fMRI data
fMRI images were acquired at the Magnetic Resonance Research Center at Yale University on a 3.0

T Siemens Prisma MRI scanner using a 64-channel head coil. A high-resolution structural image was

collected using a 3D MP-RAGE sequence (TR = 1900 ms, TE = 2.52 ms, flip angle = 9˚,

FOV = 350�263 mm, matrix = 256�96, slice thickness = 1 mm, 176 slices). Functional images were

collected using a multiband sequence (TR = 2000 ms, TE = 33 ms, flip angle = 55˚, FOV = 192�192

mm, matrix = 128�128, slice thickness = 1.5 mm, 81 slices, multiband acceleration factor = 3) with

isotropic 1.5 mm3 voxels.

Preprocessing of fMRI data
Preprocessing was performed using the FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl).

Images were skull-stripped using FSL’s brain extraction tool (BET) with bias field and neck cleanup.

The first five volumes (10 s) of each functional run were discarded to allow the MR signal to stabilize.

Motion correction was performed using MCFLIRT linear realignment and a high pass filter of 0.01 Hz

was applied. Data for whole-brain univariate general linear model (GLM) analysis were spatially

smoothed at an FWHM of 5 mm. Data for multivariate multi-voxel pattern analysis (MVPA) were spa-

tially smoothed at an FWHM of 2 mm. No slice timing correction was applied. Functional data were

registered to high-resolution structural images using a 6 DOF transformation. For group level GLM

analyses, images were normalized to the Montreal Neurological Institute template (2 mm MNI152).

Self-reported measures of social attitudes
Social attitudes were assessed using Qualtrics for all participants who completed at least one fMRI

session. Questionnaire links were sent after the final fMRI session, and participants were paid an

additional $10 when all questionnaires were completed. Questionnaires included the Self-Report
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Altruism Scale (Rushton et al., 1981), the Empathy Quotient (Baron-Cohen and Wheelwright,

2004), the Autism Quotient (Baron-Cohen et al., 2001), the Levenson Self-Report Psychopathy

Scale (Levenson et al., 1995), and the Severity Measure for Social Anxiety Disorder (Social Phobia) –

Adult (APA, 2013).

Analysis of behavioral data
Behavioral data were analyzed using Matlab 2014a (MathWorks). All behavioral comparison tests

consisted of two-tailed, nonparametric Wilcoxon signed rank or rank sum tests to a threshold value

of p<0.05 with N defined as the number of participants, unless otherwise indicated. The fminsearch

function in Matlab, which in turn uses the Nelder-Mead simplex algorithm, was used to estimate all

model parameters.

Intertemporal choice behavioral modeling
Decision-making behavior for self and other during the intertemporal choice task was modeled using

a hyperbolic (Equation 1) decay function:

SVo¼ Ro �
1

1þ k � to
(1)

This model assumes that the subjective value (SV) of each option (o) is determined by the mone-

tary reward level (R) and the time to receive reward (t), depending on a participant-specific discount-

ing parameter (k) that describes the steepness of each individual’s devaluation of reward by time to

reward. Previous studies have indicated that intertemporal choice is governed by a hyperbolic dis-

counting model (Kable and Glimcher, 2007). We added variations of this model to our study, such

that one model assumed a consistent value for k across self and other (kb), while another model

assumed distinct values for k for self (ks) versus other (ko). This approach was also taken in a recent

study regarding the effects of social effort on subjective value (Lockwood et al., 2017). Finally, the

softmax function (Equation 2) was used to calculate choice probability:

P rð Þ ¼
e
b�SVr

eb�SVr þ eb�SVl
(2)

In this equation, P(r) represents the probability of choosing the right option (r) with a subjective

value of SVr as opposed to the left option (l) with a subjective value of SVl. A noise parameter (b)

defines the stochasticity of each participant’s choices. Models with either one b parameter across

self and other or one b each for self and other were also examined. Thus, a total of four models

were tested, including hyperbolic decay models with either one or two values for k and b. We used

Bayesian information criterion (BIC) to compare model performance (Schwarz, 1978) in addition to

using these BIC values to approximate a Bayes factor individually for each participant

(Wagenmakers, 2007).

Risky choice behavioral modeling
Decision-making behavior for self and other during the risky choice task was modeled using prospect

theory (Kahneman and Tversky, 1979) (Equation 3):

SVo¼ Poð Þ �Roa (3)

This model assumes that the subjective value (SV) of a given option (o) is determined by the mon-

etary reward level (R) and the probability of receiving reward (P), depending on a participant-specific

risk preference factor (a) that describes the level of risk aversion of each individual. This approach

has been used successfully to model risk behaviors in earlier studies (Levy et al., 2010). Similar to

our modeling of the intertemporal choice task, we added a variation of this model to our study, such

that one model assumed a consistent value for a across self and other (ab), while another model

assumed distinct values for a for self (as) versus other (ao). Again, models with either one b parame-

ter across self and other or one b each for self and other were also examined. This resulted in a total

of four models being tested. The softmax function (Equation 2) was used to calculate choice proba-

bility, and BIC was used to compare model performance (Schwarz, 1978) in addition to using these

BIC values to approximate a Bayes factor individually for each participant (Wagenmakers, 2007).
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Quantification of subjective value
We conceptualized subjective value using two different approaches for neural analyses. First, we cal-

culated the subjective value of the chosen option minus the subjective value of the unchosen option

and noted this measure as relative subjective value. Next, we determined the subjective value of the

chosen option alone. Thus, for further analyses, we conceptualized subjective value as either the rel-

ative subjective value – the signed difference between the chosen and unchosen options – or the

absolute subjective value of the chosen option. For certain analyses, these values were used to sepa-

rate trial types into high and low-value trials. This was accomplished by performing a median split,

such that the half of trials with a low subjective value measure were considered ‘low-value’ trials,

whereas the half of trials with a high subjective value measure were considered ‘high-value’ trials. To

facilitate this categorization from continuous subjective value variables, trials were individually

planned by design for each participant to maximize the intended separation of relative subjective

value between high and low-value trials. While the actual distributions were not strictly bimodal as

was initially intended due to changes in participant preferences between the preliminary and fMRI

sessions, the mean and median of high-value versus low-value trials were still clearly separated by a

minimum difference of 400%. The median split was performed for multivariate neural analyses to

maximize the power of the utilized binary classification algorithms.

Response time analysis
Response times for fMRI sessions were calculated as the difference in time between the onset of the

choice period and the pressing of a button to indicate choice (Figure 1a,d). Response times were

then compared between high and low-value trials as well as between Self and Other trials.

Online versus offline analyses
Previous literature has indicated distinct neural correlates for the subjective value of the agent for

whom a participant is making decisions (the online agent) versus the subjective value of the agent

for whom a participant is not making decisions (the offline agent) (Nicolle et al., 2012). Thus, for

models that involve distinct free parameters for self versus other-referenced decision-making, offline

values can be calculated by switching the parameters used to calculate online values. Using the inter-

temporal choice paradigm as an example, using ks to calculate value during self-referenced deci-

sion-making constitutes online analyses, while using ko to calculate value during self-referenced

decision-making constitutes offline analyses. For offline relative subjective value analyses, the chosen

option was assumed to be the option with the higher subjective value. Online versus offline subjec-

tive value measures were uncoupled in the intertemporal choice paradigm by ensuring that the simu-

lated trial set for each participant lead to uncorrelated subjective value measures across self and

other.

Definition of regions of interest (ROIs)
Spherical ROIs
Spherical ROIs were produced for the ventromedial prefrontal cortex (vmPFC) (Clithero and Rangel,

2014) and dorsomedial prefrontal cortex (dmPFC) (Venkatraman et al., 2009a;

Venkatraman et al., 2009b) using peak coordinates from previous studies and placed along the

midline for MVPA analyses. One intermediate ROI (imPFC) was also placed along the medial pre-

frontal cortex between the vmPFC and dmPFC. A control ROI was placed in right somatosensory

cortex (S1). Spherical ROIs were grown from a central coordinate to either 5 mm in diameter to

extract effect sizes from univariate analyses or 8 mm in diameter for use in multivariate analyses (Fig-

ure 4—source data 1).

Anatomical ROI
A bilateral anatomical ROI for the dmPFC was extracted from studies of macaque and human ana-

tomical connectivity (Neubert et al., 2015; Mars et al., 2016). This dmPFC ROI corresponded to

bilateral area 9 m and the posterior rostral cingulate zone (Figure 4—source data 1).
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Univariate analysis of fMRI data
Whole brain voxelwise regression analyses were conducted using the fMRI expert analysis tool

(FEAT) in FSL. Regressors of interest were convolved with a gamma function. In all GLM analyses,

the 5 s delay period before participants were instructed to indicate their decision was modeled. Six

motion regressors were included in every model. Nuisance regressors were included for error trials

and task block structure. All regressor values were mean-corrected and standard deviation-normal-

ized prior to GLM analyses. Results for each participant were combined across eight runs using a

fixed effects model. FSL’s mixed effects Flame 1 and 2 model was used to create group averages,

which were cluster corrected at a cluster-defining threshold of p<0.001 uncorrected to satisfy

p<0.05 family-wise error (FWE). For ROI analyses, effect sizes were extracted and converted to per-

cent signal change using FEATquery in FSL and compared using two-tailed, nonparametric Wilcoxon

signed rank and Friedman tests to a threshold value of p<0.05 with N defined as the number of

participants.

GLM 1
Regressors of interest included Self trials and Other trials. Main effects as well as two contrasts, Self

over Other and Other over Self, were modeled.

GLM 2
Regressors of interest included online relative subjective value for self and online relative subjective

value for other. Log of response time was included as a nuisance regressor. Main effects as well as

two contrasts, online self relative subjective value over online other relative subjective value and

online other relative subjective value over online self relative subjective value, were modeled.

GLM 3
Regressors of interest included offline relative subjective value for self and offline relative subjective

value for other. Log of response time was included as a nuisance regressor. Main effects were

modeled.

GLM 4
Regressors of interest included Self trial online subjective value of the chosen option, Self trial online

subjective value of the unchosen option, Other trial online subjective value of the chosen option,

Other trial online subjective value of the unchosen option, Self trial offline subjective value of the

chosen option, Self trial offline subjective value of the unchosen option, Other trial offline subjective

value of the chosen option, and Other trial offline subjective value of the unchosen option. Log of

response time was included as a nuisance regressor. Contrasts of the offline subjective value of the

chosen option over the offline subjective value of the unchosen option were modeled for Self and

Other trials separately as well as Self and Other trials together. These methods were designed to

recapitulate previous work (Nicolle et al., 2012) and were thus only applied to the intertemporal

choice paradigm.

GLM 5
Regressors of interest included subjective value of the chosen option for self and subjective value of

the chosen option for other. Main effects were modeled.

Neurosynth
A Neurosyth (Yarkoni et al., 2011) term search for ‘social’ was performed using forward-inference,

with a threshold at p<0.01 false discovery rate (FDR) corrected.

Multivariate analysis of fMRI data
Spherical ROIs used to classify trial types included the vmPFC, dmPFC, S1 as a control region, as

well as an intermediate ROI placed between the vmPFC and dmPFC in the medial prefrontal cortex.

Analyses were also replicated using an anatomically defined ROI for the dmPFC. Individual beta

weights for each 5 s decision-making period were obtained using AFNI’s 3dDeconvolve and
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3dREMLfit. Patterns were mean-centered prior to performing pattern classification. Classification

was performed using the glmnet model in the caret package in R (Kuhn, 2016) for each of the ROIs

within each participant. This algorithm fits a generalized linear model under penalized maximum like-

lihood and contains two tuning parameters, alpha and lambda. The parameter alpha can be set

between 0 (‘ridge’), in which the elastic-net penalty shrinks the coefficients of correlated predictors

toward each other, and 1 (‘lasso’), in which the lasso tends to pick one of them and discard the

others. The parameter lambda then controls the strength of the penalty. In our study, the parameter

alpha was set outright to 0, and the model was optimized within each participant by allowing

lambda to vary over a grid of 100. Nevertheless, we repeated all analyses with the parameter alpha

set to 1, and adjustment of this parameter did not affect the qualitative pattern of results. To ensure

that classifiers were never trained and tested on data from the same scanning run (Mumford et al.,

2014), trials were split into four blocks. Classifiers were trained on data from three of these blocks

and tested on the remaining block. All possible combinations of blocks were evaluated and aver-

aged. The downsampling function in caret was used to correct for any situations in which labels were

unbalanced. This procedure was used for all analyses, even those that involved training and testing

classifiers on separate trials or datasets. Classification accuracy for the optimal model was obtained

for each participant and then all participants were averaged to get the mean group accuracy for

each ROI.

Significance was determined using an empirical null distribution for each ROI created by combin-

ing permutation and bootstrapping (Lee and McCarthy, 2016; Stelzer et al., 2013). For each ROI

for each participant, training labels were permuted 100 times to create 100 datasets in which the

label and the data were dissociated. Classification was then run as described above for each of these

100 permuted data sets to create 100 null accuracies for each participant. A group level null distribu-

tion for each ROI was then created by randomly sampling a null accuracy for each participant and

averaging those accuracies across all participants 10,000 times. The true average group accuracy

was then compared to the empirical null distribution for that ROI to determine the p-value for that

accuracy. This procedure is critical for accurate determination of significance, as assumptions of a

chance level of 50% are not valid in small sample sizes (Combrisson and Jerbi, 2015; Golland and

Fischl, 2003). Direct comparisons between performance accuracy of classifiers trained to categorize

different behavioral variables were performed using two-tailed, nonparametric Wilcoxon signed rank

and Friedman tests to a threshold value of p<0.05 with N defined as the number of participants.

Classification of trial variables separately for self and other
Online relative subjective value, offline relative subjective value, and subjective value of the chosen

option were placed into either ‘high’ or ‘low’ groups based on median split. Within Self trials and

Other trials, pattern classifiers were trained to decode high versus low trials. Cross-validation

ensured that classifiers were never trained and tested on data from the same run. Significance was

determined via permutation test.

Classification of online relative subjective value across self and other
Pattern classifiers trained on online relative subjective value from Self trials using the methods out-

lined above were tested on Other trials, and vice versa. This was done to determine the ability of

the neural code to retain information for relative subjective value across self and other. Significance

was determined via permutation test.

Classification of online relative subjective value across tasks
Pattern classifiers trained on online relative subjective value from Self and Other trials during the

intertemporal choice task were tested on Self and Other trials during the risky choice task, and vice

versa. This was done to determine ability of the neural code to retain information for relative subjec-

tive value across behavioral paradigms. Significance was determined via permutation test.

Correlations of multivariate analyses with self-reported data
We determined the correlation between the agent cross-decoding accuracy of classifiers to identify

high versus low-value trials and self-reported social attitudes. Classifier cross-decoding accuracy was

evaluated by averaging classifier accuracy when training on Self trials and testing on Other trials,
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and vice versa. For participants who completed both the intertemporal and risky choice tasks, agent

cross-decoding accuracy was averaged across both sessions. For self-reported data, a principal com-

ponent analysis was performed on scores from all five questionnaires administered. The first principal

component score for each participant was calculated and used as a measure of social attitudes. Cor-

relation between relative subjective value agent cross-decoding accuracy and self-reported social

attitudes was evaluated by Spearman’s rank correlation to a threshold of p<0.05. Significance was

confirmed via a permutation test in which corresponding axis labels were shuffled 10,000 times to

create a null distribution. This analysis was then completed after decomposing agent cross-decoding

into training on Self trials and testing on Other trials, and vice versa. Finally, this analysis was com-

pleted separately for the intertemporal and risky choice paradigms.

Data visualization and determination of cluster locations
Statistical maps were visualized using FSL’s FSLview. Anatomical locations of peak voxels for all clus-

ters listed in source data files were determined according to the Harvard-Oxford cortical and subcor-

tical atlases. Violin plots were generated in Matlab using the function ksdensity to perform kernel

density estimations with a bandwidth of 0.025 commonly applied to all distributions.

Data and code availability
Full neural datasets are available and downloadable from OpenNeuro. The Social Decision-Making

Intertemporal Choice Task Dataset is here https://doi.org/10.18112/openneuro.ds001882.v1.0.5 and

the Social Decision-Making Risky Choice Task Dataset is here https://doi.org/10.18112/openneuro.

ds001883.v1.0.1. Matlab code for fitting models to behavioral data and R code for MVPA analyses

are available and downloadable from GitHub (Piva, 2019; copy archived at https://github.com/eli-

fesciences-publications/social-decision-making-fmri).
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